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The paper considers a boundary-value problem for a hybrid system of di�erential

equations, which represents a generalized mathematical model for a system of

interconnected rigid bodies attached to the rod by elastic-damping links. A hybrid system

of di�erential equations is understood as a system of di�erential equations composed

of ordinary di�erential equations and partial di�erential equations. For the theoretical

foundations of our approach to investigation of the boundary value problem for the hybrid

system of di�erential equations we propose a method of �nding eigenvalues for the boundary-

value problem. The comparative analysis of the results of numerical computations conducted

with the use of the proposed method and the results obtained by other techniques known

from the literature have proved the validity and the universal character of the proposed

approach.
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Introduction

In the process of investigation of mechanical system containing both the objects with
concentrated parameters and the objects with distributed parameters within the frames of
existing theories the researches encounter substantial di�culties. The point is that, on the
one hand, the respective theories for such objects have initially been represented in terms of
di�erent and sometimes hardly ever compatible languages. On the other hand, application
of the Hamilton variation principle for constructing the equation of total dynamics for
the systems with concentrated and distributed parameters necessitates consideration of
hybrid systems of di�erential equations, whose investigation still needs due attention. The
term "a hybrid system of di�erential equations" implies a system of di�erential equations
composed of ordinary di�erential equations and partial di�erential equations.

As far as investigations of mechanical vibrations of elements of di�erent constructions,
parts and mechanisms are concerned, the computational schemes to be investigated are in
many cases represented by rigid bodies (or systems of rigid bodies) interconnected with
the aid of elastic links and the rod.

The issues of investigation of the systems of interconnected rigid bodies and elastic
rods are discussed in [1�18]. The investigations bound up with mechanical systems and
implying the application of various computational schemes (a rigid body linked with a rod;
a cascade system of rigid bodies, which is connected with a rod; rigid bodies horizontally
mounted (�xed) on a rod; several rigid bodies connected with each other and mounted on
a rod) can be found in [1�6].

A generalized mathematical model of a system of rigid bodies mounted on the Euler �
Bernoulli beam, on whose basis a universal method of constructing a frequency equation
for a given class of mechanical systems has been developed, can be found in [7]. An
approach, which allows one to take into account the damping properties of elastic links in
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the generalized mathematical model, is described in [8]. Mathematical models of various
typical computational schemes designed for a beam with rigid bodies elastically mounted
on it and intended for investigation of free vibrations can be found in [9�18]. It is known
that special analytical and numerical-analytical methods are developed for the purpose of
investigations related to free vibrations. The method of �nite elements can also be used
in this case. Unfortunately, the majority of mathematical models of typical computational
schemes are the models elaborated for particular case studies. Meanwhile, a generalized
mathematical model [7] is needed.

The present paper considers a boundary value problem for a hybrid system of
di�erential equations, which represents a generalized mathematical model of a system
of interconnected rigid bodies, which are mounted on a rod by �exible-damping links.

1. Problem Statement

The accounting of damping in �exible links of the generalized mathematical model [7]
leads to the general mathematical model suitable for a class of mechanical systems, which
may be modelled as an Euler � Bernoulli beam with �xed edges and a system of rigid
bodies mounted on the beam by elastic-damping links. Such a system of rigid bodies is
described by the following hybrid system of di�erential equations [8]

Az̈ + C1z + C2(Dz − ū) +B1ż +B2(Dż − ˙̄u) = 0,

k
∂2u

∂t2
(x, t) + b

∂4u

∂x4
(x, t) =

=
m∑
i=1

(
qi
(
diT z(t)− u(x, t)

)
+ pi

(
diT ż − ∂u

∂t
(x, t)

))
δ(x− ai),

(1)

where z(t) is an n-dimensional vector function; u(x, t) is a scalar function; ū(t) is an m-
dimensional vector function with the components u(a1, t), . . . , u(am, t); A, B1, C1 are the
given constant n × n -matrices; B2, C2 are given constant n ×m -matrices; D is a given
constant m×n -matrix; di is an n-dimensional vector composed of the i-th row of matrix
D; k, b, ai, qi, pi; (i = 1, . . . ,m) are given constants, furthermore, 0 ≤ ai ≤ l; from now
on, (·)T denotes the transposition operation.

If we assume that function u(x, t) in (1) describes transversal transitions of the
rod's points, then, correspondingly, some boundary conditions, which correspond to some
techniques of �xing the ends, have to be imposed on function u(x, t).

In particular, in the case of sti� attaching (staying) at the rod's ends we have

u(0, t) = u(l, t) = 0,
∂u

∂x
(0, t) =

∂u

∂x
(l, t) = 0, (2)

in the case of sti� attaching (staying) at the left end and hinge-based attaching at the
right end we have

u(0, t) = 0,
∂u

∂x
(0, t) = 0, u(l, t) = 0,

∂2u

∂x2
(l, t) = 0, (3)

in the case of sti� attaching on the left end and on the free right end we have

u(0, t) = 0,
∂u

∂x
(0, t) = 0,

∂2u

∂x2
(l, t) = 0,

∂3u

∂x3
(l, t) = 0. (4)
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Solution of the hybrid system of di�erential equations (1) is understood in the
generalized sense. In this connection, let us introduce the concept of a generalized solution
of the hybrid system of di�erential equations (1) satisfying some boundary conditions.

To this end let us consider a set of vector functions

K =
{
(y(·), ν(·, ·))T : y(·) ∈ Cn

∞,[0,T ], ν(·, ·) ∈ C∞,∞,D

}
, (5)

where D = {(x, t) ∈ R2 : 0 ≤ x ≤ l, 0 ≤ t ≤ T} is a rectangle. Let us call vector functions
from the set (5) the principal vector functions.

Noteworthy, in the case, when considering a boundary value problem for a mechanical
system, which represents an Euler � Bernoulli beam with �xed ends and with a system of
rigid bodies mounted on the beam by means of elastic-damping links, these bodies being
interconnected via elastic-damping links, the class of principal functions may be interpreted
as admissible variations of the generalized coordinates in the Hamilton principle.

De�nition 1. A vector function z(·) ∈ Cn
2,[0,T ], a scalar function u(·, ·) ∈ C4,2,D represent

the generalized solution of the boundary value problem for the hybrid system of di�erential
equations (1), when (i) function u(x, t) satis�es the boundary conditions of the boundary-
value problem and (ii) for any principal vector function (y(·), ν(·, ·))T ∈ K the following
identity holds:

T∫
0

(Az̈ + C1z + C2(Dz − ū) + B1ż +B2(Dż − ˙̄u), y(t)) dt+

+

∫∫
D

(
k
∂2u

∂t2
(x, t) + b

∂4u

∂x4
(x, t)−

m∑
i=1

(
qi
(
diT z(t)− u(x, t)

)
+

+ pi

(
diT ż − ∂u

∂t
(x, t)

))
δ(x− ai)

)
· ν(x, t) dx dt = 0.

Let us consider a boundary value problem with the boundary conditions (2) or (3) or
(4) for the system described by a hybrid system of di�erential equations (1).

2. An Auxiliary Boundary Value Problem

Having substituted functions z(t), u(x, t) of the form

z(t) = Zeλt, u(x, t) = V (x)eλt

into system (1), we have

(λ2A+ C1 + C2D + λ(B1 +B2D)Z − (C2 + λB2)V̄ = 0, (6)

λ2kV (x) + b
d4V (x)

dx4
=

m∑
i=1

(
qi
(
diTZ − V (x)

)
+ λpi

(
diTZ − V (x)

) )
δ(x− ai), (7)

where V is an m-dimensional vector with the components V (a1),. . . ,V (am).
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Real or complex values of λ, for which there exists a generalized solution of the
boundary value problem (4), (5), are hence called the eigenvalues. And the solutions of the
boundary value problem corresponding to the eigenvalues (Z is an n-dimensional vector,
V (x) is a function) are called the eigen-solutions of this boundary-value problem.

Due to the boundary conditions imposed on function u(x, t) function V (x) satis�es
the following conditions:

� under boundary conditions (2)

V (0) = V (l) = 0,
dV

dx
(0) =

dV

dx
(l) = 0, (8)

� under boundary conditions (3)

V (0) = 0,
dV

dx
(0) = 0, V (l) = 0,

d2V

dx2
(l) = 0, (9)

� under boundary conditions (4)

V (0) = 0,
dV

dx
(0) = 0,

d2V

dx2
(l) = 0,

d3V

dx3
(l) = 0. (10)

Consider an auxiliary boundary value problem for the algebraic-di�erential system (6)
� (7) with one of the boundary conditions (8), (9) or (10).

De�nition 2. A function V (·) ∈ C4, [0, T ] and a vector Z ∈ Rn are called a generalized
solution of the auxiliary boundary value problem, when they satisfy the system of algebraic
equations (6), the function V (x) satis�es the given boundary condition, and for any
component v(·, ·) of the principal vector function (y(·), v(·, ·))T ∈ K, for any t ∈ [0, T ] the
following identity holds:

l∫
0

(
λ2kV (x) + b

d4V (x)

dx4
−

m∑
i=1

(
qi(d

iTZ − V (x))+

+ λpi(d
iTZ − V (x))

)
δ(x− ai)

)
· ν(x, t) dx = 0.

Theorem 1. The following representation is valid for any values of λ and Z in the
generalized solution V (x) of (7)

V (x) =
m∑
i=1

Gi(x− ai)
(
qi
(
diTZ − V (ai)

)
+ λpi

(
diTZ − V (ai)

))
, (11)

where functions Gi(x), (i = 1, . . . ,m) are the generalized solutions of the following equation

λ2kGi(x) + b
d4Gi(x)

dx4
= δ(x), (i = 1, . . . ,m). (12)

Proof. Note, if function V (x) is a generalized solution of (7), then the following identity
is valid for any component v(·, ·) of the principal vector function (y(·), v(·, ·)) ∈ K, for
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any t ∈ [0, T ]

l∫
0

(
λ2kV (x) + b

d4V (x)

dx4

)
· ν(x, t) dx =

=
n∑

i=1

[(
qi
(
diTZ − V (ai)

)
+ λpi

(
diTZ − V (ai)

))
ν(ai, t)

]
. (13)

One can make sure that representation (11) is valid for the generalized solution of (7)
by a direct substitution of (11) into the left-hand side of equation (13). To this end, let us
represent equation (11) in the form

V (x) =
m∑
i=1

l∫
0

Gi(x − ξ)
(
qi
(
diTZ − V (ξ)

)
+ λpi

(
diTZ − V (ξ)

))
· δ(ξ − ai) dξ. (14)

Substitute (14) into the left-hand side of equation (13). Next, by changing the order
of integration and taking into account relationship (12), we obtain the following:

l∫
0

{ l∫
0

m∑
i=1

[(
kλ2Gi(x− ξ) + b

d4Gi(x− ξ)

dx4

)(
qi
(
diTZ − V (ξ)

)
+

+ λpi
(
diTZ − V (ξ)

) )
δ(ξ − ai)

]
dξ

}
· ν(x, t) dx =

=
m∑
i=1

l∫
0

[ (
qi
(
diTZ − V (ξ)

)
+ λpi

(
diTZ − V (ξ)

))
δ(ξ − ai) ·

l∫
0

(
kλ2Gi(x− ξ)+

+ b
d4Gi(x− ξ)

dx4

)
ν(x, t) dx

]
dξ =

m∑
i=1

l∫
0

[(
qi
(
diTZ − V (ξ)

)
+

+ λpi
(
diTZ − V (ξ)

) )
δ(ξ − ai) ·

l∫
0

ν(x, t)δ(x− ξ) dx

]
dξ =

=
m∑
i=1

l∫
0

[ (
qi
(
diTZ − V (ξ)

)
+ λpi(d

iTZ − V (ξ))
)
ν(ξ, t)δ(ξ − ai)

]
dξ =

=
n∑

i=1

[ (
qi
(
diTZ − V (ai)

)
+ λpi

(
diTZ − V (ai)

))
ν(ai, t)

]
,

what coincides with the right-hand side of (13).
Therefore, representation (11) is valid for the generalized solution V (x) of (7).

2
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Corollary 1. If generalized solutions Gi(x), (i = 1, . . . ,m) of (12) satisfy the following
boundary conditions

Gi(−ai) = Gi(l − ai) = 0,
dGi

dx
(−ai) =

dGi

dx
(l − ai) = 0, (i = 1, . . . ,m), (15)

then function V (x), which satis�es representation (11), is the generalized solution of (7),
and satis�es the boundary conditions (8).

Indeed, for the function V (x), which satis�es (11), the satisfaction of the boundary
conditions (8) follows immediately from the boundary conditions (13) for the functions
Gi(x), (i = 1, . . . ,m).

Similar corollaries may be formulated for the function V (x), which satis�es both
representation (11) and the boundary conditions (9) or (10). In case of boundary conditions
(9) or (10), functions Gi(x), (i = 1, . . . ,m) shall satisfy, respectively, the following
boundary conditions:

Gi(−ai) = 0, Gi(l−ai) = 0,
dGi

dx
(−ai) = 0,

d2Gi

dx2
(l−ai) = 0, (i = 1, . . . ,m) (16)

and

Gi(−ai) = 0,
dGi

dx
(−ai) = 0,

d2Gi

dx2
(l−ai) = 0,

d3Gi

dx3
(l−ai) = 0. (i = 1, . . . ,m). (17)

3. On Finding the Eigenvalues

For the purpose of funding the functions G1(x), G2(x), . . . , Gm(x), which enter (11),
we have m boundary value problems for the equation

λ2kG(x) + b
d4G(x)

dx4
= δ(x) (18)

with the boundary conditions (15), (16) or (17) depending on the problem statement.
The general solution G(x) of (18) can be found in the form of the sum of the general

solution G0(x) of the homogeneous equation

λ2kG(x) + b
d4G(x)

dx4
= 0 (19)

and some particular generalized solution G̃(x) of the non-homogeneous equation (18), i.e.

G(x) = G0(x) + G̃(x). (20)

The general solution G0(x) of the homogeneous equation (19) may be written in the
form

G0(x) = c1e
k1x + c2e

k2x + c3e
k3x + c4e

k4x,

where c1, c2, c3, c4 are arbitrary constants; k1, k2, k3, k4 are the roots of the characteristic
equation, which are de�ned as follows:

k1 =

(√
2

2
+ i

√
2

2

)
m, k2 =

(√
2

2
− i

√
2

2

)
m,
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k3 =

(
−
√
2

2
− i

√
2

2

)
m, k4 =

(
−
√
2

2
+ i

√
2

2

)
m.

Here m4 = λ2k
b
. Note that the expression of the generalized solution G0(x) de�nes the

general complex solution of equation (19).

To the end of obtaining a particular generalized solution G̃(x) of non-homogeneous
equation (18) let us use the following statement, which represents a corollary of the theorem
on the fundamental solution for the linear di�erential equation [19].

Proposition 1. If the function f(x) represents a solution of the homogeneous equation
(19), which satis�es the following conditions

f(0) = f I(0) = f II(0) = 0, f III(0) =
1

b
, (21)

then function G(x) = θ(x)f(x), where θ(x) is the Heaviside function

θ(x) =

{
1, x > 0,

0, x < 0.

satis�es equation (18) in the generalized sense.

Note, the solution of the homogeneous equation (19), which satis�es conditions (21)
can be found in the following form

f(x) = α1

(
ek2x − ek1x

)
+ α2

(
ek3x − ek1x

)
+ α3

(
ek4x − ek1x

)
,

where

α1 =
1

b(k2 − k1)(k2 − k3)(k2 − k4)
, α2 =

1

b(k3 − k1)(k3 − k2)(k3 − k4)
,

α3 =
1

b(k4 − k1)(k4 − k2)(k4 − k3)
.

Therefore, the function

G(x) = θ(x)
(
α1

(
ek2x − ek1x

)
+ α2

(
ek3x − ek1x

)
+ α3

(
ek4x − ek1x

))
represents a particular generalized solution of the non-homogeneous equation (18).

To the end of �nding generalized solutions G1(x), G2(x), . . . , Gm(x) of (12) satisfying
the boundary conditions given according to the problem statement, let us de�ne arbitrary
constants c1, c2, c3, c4, in the general solution presuming satisfaction of the respective
boundary conditions.

Further, by sequential substituting the following values to the variables x = a1, x = a2,
. . . , x = am in (11), we obtain the following system of linear algebraic equations with
respect to V (a1), V (a2), . . . , V (am)

(1 +Gj(0)(qj + λpj))V (aj) +
m∑

i=1,
i̸=j

Gi(aj − ai)(qi + λpi)V (ai)) =

=
m∑
i=1

Gi(aj − ai)d
iT (qi + λpi)Z, (j = 1, . . . ,m). (22)
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Having applied matrix denotations, system (22) may be rewritten in the following
form:

NZ −MV̄ = 0, (23)

where M is the m×m matrix

M =


(1 +G1(0)(q1 + λp1)) . . . Gm(a1 − am)(qm + λpm)
G1(a2 − a1)(q1 + λp1) . . . Gm(a2 − am)(qm + λpm)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G1(am − a1)(q1 + λp1) . . . (1 +Gm(0)(qm + λpm)),


N is the m× n matrix

N =



m∑
i=1

Gi(a1 − ai)(qi + λpi)d
i
1 . . .

m∑
i=1

Gi(a1 − ai)(qi + λpi)d
i
n

m∑
i=1

Gi(a2 − ai)(qi + λpi)d
i
1 . . .

m∑
i=1

Gi(a2 − ai)(qi + λpi)d
i
n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
m∑
i=1

Gi(am − ai)(qi + λpi)d
i
1 . . .

m∑
i=1

Gi(am − ai)(qi + λpi)d
i
n


.

Having joined (23) and (6), we obtain a system of linear homogeneous algebraic
equations with respect to the vector of amplitudes Z and V :{

λ2A+ C1 + C2D + λ(B1 +B2D)Z − (C2 + λB2)V = 0,

NZ −MV = 0.
(24)

System (24) has nonzero solutions when its determinant is zero. Having equated the
determinant of (24) to zero, we obtain the equation needed for �nding of the eigenvalues
of the boundary value problem

det

(
λ2A+ C1 + C2D + λ(B1 +B2D) −(C2 + λB2)

N −M

)
= 0.

4. Example. The Comparative Analysis

Consider a console rod with three rigid bodies installed (mounted) on springs. The
respective computational model is given in Figure. The rod's left end if sti�y �xed, while
the right end is not �xed.

Rigid bodies having masses, respectively, m1, m2, m3, are mounted on the springs
having the sti�ness coe�cients, respectively, c1, c2, c3 at the distances a1, a2, a3 from the
rod's left end and execute translational motions (displacements) z1(t), z2(t), z3(t) in the
direction of the axes O1z1, O2z2, O3z3. In the resent case, the points O1, O2, O3 coincide
with the equilibrium positions for these bodies. Displacements of the points of this rod
may be described by function u(x, t).

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2017. Ò. 10, � 1. Ñ. 22�34

29



A.D. Mizhidon

The computational scheme for the system represented by the console rod with three oscillators

presuming damping

The hybrid system of di�erential equations describing motion of the scrutinized system,
which has been obtained on the basis of the Hamilton principle, writes as follows:

m1z̈1 + b1
(
ż1 − ∂u

∂t
(a1, t)

)
+ c1(z1 − u(a1, t)) = 0,

m2z̈2 + b2
(
ż2 − ∂u

∂t
(a2, t)

)
+ c2(z2 − u(a2, t)) = 0,

m3z̈3 + b3
(
ż3 − ∂u

∂t
(a3, t)

)
+ c3(z3 − u(a3, t)) = 0,

ρF
∂2u

∂t2
+ EJ

∂4u

∂x4
= (c1(z1 − u(x, t)) + b1

(
ż1 −

∂u

∂t
(x, t)

)
δ(x− a1) +

+ (c2(z2 − u(x, t)) + b2

(
ż2 −

∂u

∂t
(x, t)

)
δ(x− a2) +

+ (c3(z3 − u(x, t)) + b3

(
ż3 −

∂u

∂t
(x, t)

)
δ(x− a3).

(25)

Here ρ is the volume density of the rod's material; F is the area of the rod's cross-
section; E, J are, respectively, the �rst-kind elastic modulus for the rod's material, and
the inertia moment for the rod's cross-section area with respect to the axis passing through
the cross-sectional gravity center, which is perpendicular to the plane of the rod's bending
vibrations; b is the viscous friction coe�cient characterising the spring's material. The
boundary conditions (4) are imposed on function u(x, t).

The hybrid system of di�erential equations (25) represents a particular case of the
proposed generalized mathematical model (1).

For the purpose of conducting the comparative analysis of the proposed approach we
have used the data of the model and the computations described in [18].

l = 1m is the length of the console rod;
ρF = 0, 675kg/m is the mass of the rod's unit length;
J = 5, 20833 · 10−10m4 is the inertia moment of the cross-sectional area with respect

to the neutral axis passing through the cross-sectional gravity center and perpendicular
to the plane of the rod's vibrations;

a1 = 0, 1m, a2 = 0, 5m, a3 = 0, 9m are the points at which the oscillators are mounted
(�xed);

b1 = 0, 1Ns/m, b2 = 0, 1Ns/m, b3 = 0, 1Ns/m are the viscous friction coe�cients;
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c1 = 0, 1N/m, c2 = 0, 1N/m, c3 = 0, 1N/m are the sti�ness coe�cients of the springs
in the oscillators;

E = 7 · 1010N/m2 is the Young's (elongation) modulus.
The comparison of the data of computations conducted on the basis of the approach

proposed in the present paper for the �rst two eigenvalues

λ1 = −0, 255 + 25, 839i, λ2 = −0, 235 + 161, 938i,

and the data of computations of the eigenvalues given in paper [18]:

ω1 = −0, 255 + 25, 829, ω2 = −0, 235 + 161, 941,

gives evidence of good coincidence of the results.
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ÌÎÄÅËÈÐÎÂÀÍÈÅ ÌÅÕÀÍÈ×ÅÑÊÈÕ ÑÈÑÒÅÌ
ÏÎÑÐÅÄÑÒÂÎÌ ÎÁÚÅÄÈÍÅÍÈß ÓÐÀÂÍÅÍÈÉ
Ñ ÑÎÑÐÅÄÎÒÎ×ÅÍÍÛÌÈ È ÐÀÑÏÐÅÄÅËÅÍÍÛÌÈ
ÏÀÐÀÌÅÒÐÀÌÈ

À.Ä. Ìèæèäîí

Â äàííîé ñòàòüå ðàññìàòðèâàåòñÿ êðàåâàÿ çàäà÷à äëÿ ãèáðèäíîé ñèñòåìû äèôôå-

ðåíöèàëüíûõ óðàâíåíèé, ïðåäñòàâëÿþùåé ñîáîé îáîáùåííóþ ìàòåìàòè÷åñêóþ ìîäåëü
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ñèñòåì âçàèìîñâÿçàííûõ òâåðäûõ òåë, ïðèêðåïëåííûõ óïðóãî äåìïôèðóþùèìè ñâÿçÿ-

ìè ê ñòåðæíþ. Ïîä ãèáðèäíûìè ñèñòåìàìè äèôôåðåíöèàëüíûõ óðàâíåíèé ïîíèìàåòñÿ

ñèñòåìà äèôôåðåíöèàëüíûõ óðàâíåíèé, ñîñòîÿùàÿ èç îáûêíîâåííûõ äèôôåðåíöèàëü-

íûõ óðàâíåíèé è óðàâíåíèé â ÷àñòíûõ ïðîèçâîäíûõ. Â êà÷åñòâå òåîðåòè÷åñêèõ îñíîâ

èññëåäîâàíèÿ êðàåâîé çàäà÷è äëÿ ãèáðèäíîé ñèñòåìû äèôôåðåíöèàëüíûõ óðàâíåíèé

ïðåäëàãàåòñÿ ìåòîä íàõîæäåíèÿ ñîáñòâåííûõ çíà÷åíèé êðàåâîé çàäà÷è. Ñðàâíèòåëü-

íûé àíàëèç ÷èñëåííûõ ðàñ÷åòîâ, ïðîâåäåííûõ ïðåäëîæåííûì ìåòîäîì ñ ðàñ÷åòàìè

ïðîâåäåííûìè äðóãèìè ñïîñîáàìè, èçâåñòíûìè èç ëèòåðàòóðû, ïîêàçàë äîñòîâåðíîñòü

è óíèâåðñàëüíîñòü ïðåäëàãàåìîãî ïîäõîäà.

Êëþ÷åâûå ñëîâà: êðàåâàÿ çàäà÷à; ãèáðèäíàÿ ñèñòåìà äèôôåðåíöèàëüíûõ óðàâíå-

íèé; ñîáñòâåííûå çíà÷åíèÿ.
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