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MODELLING OF MECHANICAL SYSTEMS BASING
ON INTERCONNECTED DIFFERENTIAL AND PARTIAL
DIFFERENTIAL EQUATIONS
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The paper considers a boundary-value problem for a hybrid system of differential
equations, which represents a generalized mathematical model for a system of
interconnected rigid bodies attached to the rod by elastic-damping links. A hybrid system
of differential equations is understood as a system of differential equations composed
of ordinary differential equations and partial differential equations. For the theoretical
foundations of our approach to investigation of the boundary value problem for the hybrid
system of differential equations we propose a method of finding eigenvalues for the boundary-
value problem. The comparative analysis of the results of numerical computations conducted
with the use of the proposed method and the results obtained by other techniques known
from the literature have proved the validity and the universal character of the proposed
approach.
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Introduction

In the process of investigation of mechanical system containing both the objects with
concentrated parameters and the objects with distributed parameters within the frames of
existing theories the researches encounter substantial difficulties. The point is that, on the
one hand, the respective theories for such objects have initially been represented in terms of
different and sometimes hardly ever compatible languages. On the other hand, application
of the Hamilton variation principle for constructing the equation of total dynamics for
the systems with concentrated and distributed parameters necessitates consideration of
hybrid systems of differential equations, whose investigation still needs due attention. The
term "a hybrid system of differential equations” implies a system of differential equations
composed of ordinary differential equations and partial differential equations.

As far as investigations of mechanical vibrations of elements of different constructions,
parts and mechanisms are concerned, the computational schemes to be investigated are in
many cases represented by rigid bodies (or systems of rigid bodies) interconnected with
the aid of elastic links and the rod.

The issues of investigation of the systems of interconnected rigid bodies and elastic
rods are discussed in [1-18|. The investigations bound up with mechanical systems and
implying the application of various computational schemes (a rigid body linked with a rod;
a cascade system of rigid bodies, which is connected with a rod; rigid bodies horizontally
mounted (fixed) on a rod; several rigid bodies connected with each other and mounted on
a rod) can be found in [1-6].

A generalized mathematical model of a system of rigid bodies mounted on the Euler —
Bernoulli beam, on whose basis a universal method of constructing a frequency equation
for a given class of mechanical systems has been developed, can be found in [7]. An
approach, which allows one to take into account the damping properties of elastic links in
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the generalized mathematical model, is described in [8]. Mathematical models of various
typical computational schemes designed for a beam with rigid bodies elastically mounted
on it and intended for investigation of free vibrations can be found in [9-18]. It is known
that special analytical and numerical-analytical methods are developed for the purpose of
investigations related to free vibrations. The method of finite elements can also be used
in this case. Unfortunately, the majority of mathematical models of typical computational
schemes are the models elaborated for particular case studies. Meanwhile, a generalized
mathematical model 7] is needed.

The present paper considers a boundary value problem for a hybrid system of
differential equations, which represents a generalized mathematical model of a system
of interconnected rigid bodies, which are mounted on a rod by flexible-damping links.

1. Problem Statement

The accounting of damping in flexible links of the generalized mathematical model |7]
leads to the general mathematical model suitable for a class of mechanical systems, which
may be modelled as an Euler — Bernoulli beam with fixed edges and a system of rigid
bodies mounted on the beam by elastic-damping links. Such a system of rigid bodies is
described by the following hybrid system of differential equations [8]

0%u 0'u

- é (qi (d72(t) — u(z, b)) + p; (diTz - %@;, t))) 5z — az),

where z(t) is an n-dimensional vector function; u(x,t) is a scalar function; u(t) is an m-
dimensional vector function with the components u(ay,t),...,u(amn,t); A, By, C are the
given constant n X n -matrices; By, Cy are given constant n X m -matrices; D is a given
constant m x n -matrix; d° is an n-dimensional vector composed of the i-th row of matrix
D; k, b, a;, qi, pi; (i = 1,...,m) are given constants, furthermore, 0 < a; < [; from now
on, (-)T denotes the transposition operation.

If we assume that function wu(x,t) in (1) describes transversal transitions of the
rod’s points, then, correspondingly, some boundary conditions, which correspond to some
techniques of fixing the ends, have to be imposed on function u(x,t).

In particular, in the case of stiff attaching (staying) at the rod’s ends we have

ou ou
u(0,t) = u(l,t) =0, %(O,t) = %(l,t) =0, (2)
in the case of stiff attaching (staying) at the left end and hinge-based attaching at the
right end we have

(1)

u 0*u
t)=0, —(0,t)= Lt)=0, =—(,t)=
u(0,8) =0, ——(0,8) =0, u(,t)=0, =—5(,t)=0, (3)
in the case of stiff attaching on the left end and on the free right end we have
ou 0%u D3u
0,t) =0, —(0,t)=0, —(,t)=0, —(,t)=0. 4
w(O,0)=0, SH0.0 =0, So()=0, S 0
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Solution of the hybrid system of differential equations (1) is understood in the
generalized sense. In this connection, let us introduce the concept of a generalized solution
of the hybrid system of differential equations (1) satisfying some boundary conditions.

To this end let us consider a set of vector functions

K ={@0)v(, ) y() € CL o) € Coonen } (5)

where D = {(z,t) € R?: 0 <2 <1,0 <t <T}is arectangle. Let us call vector functions
from the set (5) the principal vector functions.

Noteworthy, in the case, when considering a boundary value problem for a mechanical
system, which represents an Euler — Bernoulli beam with fixed ends and with a system of
rigid bodies mounted on the beam by means of elastic-damping links, these bodies being
interconnected via elastic-damping links, the class of principal functions may be interpreted
as admissible variations of the generalized coordinates in the Hamilton principle.

Definition 1. A vector function z(-) € C3 o4y, a scalar function u(-,-) € Cy p represent
the generalized solution of the boundary value problem for the hybrid system of differential
equations (1), when (i) function u(x,t) satisfies the boundary conditions of the boundary-
value problem and (ii) for any principal vector function (y(-),v(-, ))T € K the following
wdentity holds:

T
/ (AZ + Ci2 + Co(Dz — u) + B2 + By(Dz — ), y(t)) dt+
0

// (kzw x,t) g Z(:c t) — Z <qi (d72(t) — u(z, 1)) +

i=1

+ p; (diTz' ?;Z (x, t)) )(5(:E — ai)) cv(z,t)dedt = 0.

Let us consider a boundary value problem with the boundary conditions (2) or (3) or
(4) for the system described by a hybrid system of differential equations (1).

2. An Auxiliary Boundary Value Problem
Having substituted functions z(t), u(x,t) of the form
2(t) = ZeM,  wu(z,t) = V(z)eM

into system (1), we have

()\QA +C1 4+ CoD + X(By + BoD)Z — (Cy + )\BQ)V =0, (6)
NEV (z) + = (@ (d"Z -V (2)) + Api (d7Z =V (2)) )d(x — a;), (7)
=1
where V is an m-dimensional vector with the components V(a1),...,V (an).
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Real or complex values of A, for which there exists a generalized solution of the
boundary value problem (4), (5), are hence called the eigenvalues. And the solutions of the
boundary value problem corresponding to the eigenvalues (Z is an n-dimensional vector,
V(z) is a function) are called the eigen-solutions of this boundary-value problem.

Due to the boundary conditions imposed on function u(z,t) function V(z) satisfies
the following conditions:

— under boundary conditions (2)

av av

V)=Vl =0 —(0)=—(1)=0 8
o=v=0 Lo=%wn=0 0

— under boundary conditions (3)

av d*V
— under boundary conditions (4)
av d*V >V

V(0) =0, %(0) =0, w(l) =0, W(Z) = 0. (10)

Consider an auxiliary boundary value problem for the algebraic-differential system (6)
— (7) with one of the boundary conditions (8), (9) or (10).

Definition 2. A function V(-) € Cy 0,11 and a vector Z € R" are called a generalized
solution of the auziliary boundary value problem, when they satisfy the system of algebraic
equations (6), the function V(x) satisfies the given boundary condition, and for any
component v(-,-) of the principal vector function (y(-), v(-,-))" € K, for any t € [0, T the
following identity holds:

/(A%V )+b

Em:( (d77Z - V(x))+

S Ap(dTZ — V(x)))d(x - ai)) vz, t) dz = 0.

Theorem 1. The following representation is valid for any values of X and Z in the
generalized solution V(x) of (7)

V(x) = Z Gi(x - Cli) (Qi (diTZ - V(@i)) + Ap; (diTZ - V(ai))) ) (11)
i=1
where functions G;(z), (i = 1,...,m) are the generalized solutions of the following equation
4y
NEG;(z) + bd 51?) =d(x), (=1,...,m). (12)
x

Proof.  Note, if function V(x) is a generalized solution of (7), then the following identity
is valid for any component v(-,-) of the principal vector function (y(-), v(-,-)) € K, for
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any t € [0, T

l

/ (A%V(z) + b%) v(z,t)de =

0

n

= (@ (@72 = V(a)) +pi (&7 Z = V(@) vlai, )] . (13)

=1

One can make sure that representation (11) is valid for the generalized solution of (7)
by a direct substitution of (11) into the left-hand side of equation (13). To this end, let us
represent equation (11) in the form

m L
Z/Gz v — (g (dTZ=V(€) + Api (d"Z =V (€))) - 6(¢ — a;) dé. (14)

Substitute (14) into the left-hand side of equation (13). Next, by changing the order
of integration and taking into account relationship (12), we obtain the following:

/ { / > [ (meite -9+ 2L (g (@72 - vie) +

=1

+Ap; (A7 Z =V (€)) )a(s — )] dg} v(z,t)de =

I I
= Z/ @ (d"Z =V (&) + Api (d"Z =V (€)) —a;) / (k:)\Q — &)+
=17 J
I
d*Gi(z — "
+b#> v(z,t) dx] d¢ = 2 [ ¢ (d"Z -V () +
=t

o~

s (A7 2~ V(€)) )5(E — ar) - / (o, )3(x — €) de | dé =

0

-3/ [<ql- (472 = V(©) + di(d7Z = V() v(€. 1€ — >] & -

= Z [ ¢ (A" Z = V(@) + Api (A" Z = V(a;))) y(ai7t)] ,

what coincides with the right-hand side of (13).
Therefore, representation (11) is valid for the generalized solution V' (z) of (7).

O
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Corollary 1. If generalized solutions G;(z), (i = 1,...,m) of (12) satisfy the following
boundary conditions

G,

Gl(—CLZ) :Gz(l—az) :0, (Z—CLZ> :0, (Z: 1,,m), (15>
then function V (x), which satisfies representation (11), is the generalized solution of (7),
and satisfies the boundary conditions (8).

Indeed, for the function V(z), which satisfies (11), the satisfaction of the boundary
conditions (8) follows immediately from the boundary conditions (13) for the functions
Gi(z), (i=1,...,m).

Similar corollaries may be formulated for the function V(x), which satisfies both
representation (11) and the boundary conditions (9) or (10). In case of boundary conditions
(9) or (10), functions G;(z), (i = 1,...,m) shall satisfy, respectively, the following
boundary conditions:

dG; d*G;
Gi(—a;)) =0, Gi(l—a;) =0, o (—a;) =0, T2 (l—a;)=0, (i=1,...,m) (16)
and
dG; d*G; d*G; ,
Gi(—a;) =0, o (—a;) =0, 72 (l—a;) =0, W(l_ai) =0. (t=1,...,m). (17)

3. On Finding the Eigenvalues

For the purpose of funding the functions G1(z), Ga(z), ..., Gyn(x), which enter (11),
we have m boundary value problems for the equation
d*G(x)
2
NkG(z) + b T = d(x) (18)

with the boundary conditions (15), (16) or (17) depending on the problem statement.
The general solution G(z) of (18) can be found in the form of the sum of the general
solution Go(x) of the homogeneous equation

d*G(x)
dx?

NEG(z) + b =0 (19)

and some particular generalized solution é(x) of the non-homogeneous equation (18), i.e.
G(z) = Go(z) + G(z). (20)

The general solution Go(z) of the homogeneous equation (19) may be written in the
form
Go(x) = c1eM + ceM™ 4 3™ 4 cheM,

where c1, co, c3, ¢4 are arbitrary constants; ky, ko, k3, k4 are the roots of the characteristic
equation, which are defined as follows:

ki = <£+z£> m, ko= (é—zé) m,

2 2

Bectuuk FOYpI'Y. Cepusa «MaTteMaTudecKoe MoJejinpoBaHUe 27
u nporpammupoBanues (Bectunk FOYpI'Y MMII). 2017. T. 10, Ne 1. C. 22-34



A.D. Mizhidon

Here m?* = % Note that the expression of the generalized solution Go(z) defines the

general complex solution of equation (19).

To the end of obtaining a particular generalized solution é(az) of non-homogeneous
equation (18) let us use the following statement, which represents a corollary of the theorem
on the fundamental solution for the linear differential equation [19].

Proposition 1. If the function f(x) represents a solution of the homogeneous equation
(19), which satisfies the following conditions
1
F(0) = f1(0) = f(0) =0, f(0) = 3., (21)
then function G(x) = 0(z) f(x), where 0(x) is the Heaviside function

1, >0,

blw) = {o r <0

satisfies equation (18) in the generalized sense.

Note, the solution of the homogeneous equation (19), which satisfies conditions (21)
can be found in the following form

f(l‘) =y (ekzx _ ekwc) + (ek:;x _ 6k1z> + as (6k4z _ ek‘1.1}) ’

where
1 1
) a = bl
b(koy — k1) (ko — k3) (ke — ky) 2 b(ks — k1) (ks — ko) (ks — k4)

o) =

1
b(ky — k1) (ky — ko) (kg — k3)

3 =

Therefore, the function
G(.T) — 9(.1.) (al (ekzx o eklx) + (ekzssc . ekw) + as (€k4:c . eklx))

represents a particular generalized solution of the non-homogeneous equation (18).

To the end of finding generalized solutions G1(x), Ga(x), ..., Gp(x) of (12) satisfying
the boundary conditions given according to the problem statement, let us define arbitrary
constants ¢y, co, c3, ¢4, in the general solution presuming satisfaction of the respective
boundary conditions.

Further, by sequential substituting the following values to the variables x = a1, © = ao,
..., T = ay, in (11), we obtain the following system of linear algebraic equations with
respect to V(ay), V(ag), ..., V(an)

(14 G;(0)(g; + M)V (a;) + Y Gila; — ai)(g + Api)V (a;) =
i=1,
i#]
= Gila; —a)d™ (g + Ap)Z. (j=1,....m). (22)
=1
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Having applied matrix denotations, system (22) may be rewritten in the following

form:

NZ — MV =0, (23)
where M is the m X m matrix
(1+G10)(q1 +Ap1)) oo Gular = am)(@m + Apm)
Gl (CLQ - a1)(Q1 + /\pl) Gm(a2 - am)(Qm + )‘pm)

M=

N is the m x n matrix

m

; f(ar — a;) (g + Ap)di ... 21 Gi(ar — a;)(q; + Api)d,,
N — ; Gilaz — a;)(q; + Ap)d, ... ; Gi(as — a;)(q; + A\py)d:
; Gi(an — a;)(g + Ap)di ... ; Gi(am — a;) (g + Api)dl,

Having joined (23) and (6), we obtain a system of linear homogeneous algebraic
equations with respect to the vector of amplitudes Z and V:
NA+Cy + CyD + N(By + BoD)Z — (Cy + ABR)V = 0, (24)
NZ — MV =0.

System (24) has nonzero solutions when its determinant is zero. Having equated the
determinant of (24) to zero, we obtain the equation needed for finding of the eigenvalues

of the boundary value problem

g NA+Cy+ 0D+ ANBi+ BD) —(Cy+ ABs)\
et N Y, =0.

4. Example. The Comparative Analysis

Consider a console rod with three rigid bodies installed (mounted) on springs. The
respective computational model is given in Figure. The rod’s left end if stiffly fixed, while
the right end is not fixed.

Rigid bodies having masses, respectively, my, mo, ms, are mounted on the springs
having the stiffness coefficients, respectively, c1, co, c3 at the distances aq, as, ag from the
rod’s left end and execute translational motions (displacements) 2 (t), z2(t), 2z3(t) in the
direction of the axes Oz, Oz25, O32z3. In the resent case, the points Oy, Os, O3 coincide
with the equilibrium positions for these bodies. Displacements of the points of this rod

may be described by function u(zx,t).
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4
m: t ZI "IQTEI M] T
| |
o, o, o,
e Ba _/Si_:
, =6 “>a >
. a4 ‘;z r":i

The computational scheme for the system represented by the console rod with three oscillators
presuming damping

The hybrid system of differential equations describing motion of the scrutinized system,
which has been obtained on the basis of the Hamilton principle, writes as follows:

(mlél + bl (Zl -

) ))=0
mgéz + b2 (22 ~ Bt (CLQ, f})) + CQ(ZQ — U(ag,t)) = 0,
) ) =0

m3,'z'3 + b3 (23 - %—?(ag,t

IOF% + EJ% = (C1<Zl - u(x,t)) +b1 | 2 — %(Ufc’t)) 5(33 _ CL1> + (25)
+ (ca(z0 — ufz, 1)) + by <z2 — %(m’, t)) 5(a — as) +
+ (c3(zg — u(z,t)) + by <zg - %(m’, t)) 5(x — as).

Here p is the volume density of the rod’s material; F' is the area of the rod’s cross-
section; F, J are, respectively, the first-kind elastic modulus for the rod’s material, and
the inertia moment for the rod’s cross-section area with respect to the axis passing through
the cross-sectional gravity center, which is perpendicular to the plane of the rod’s bending
vibrations; b is the viscous friction coefficient characterising the spring’s material. The
boundary conditions (4) are imposed on function u(z,t).

The hybrid system of differential equations (25) represents a particular case of the
proposed generalized mathematical model (1).

For the purpose of conducting the comparative analysis of the proposed approach we
have used the data of the model and the computations described in [18].

[ = 1m is the length of the console rod;

pF = 0,675kg/m is the mass of the rod’s unit length;

J = 5,20833 - 107 1%m? is the inertia moment of the cross-sectional area with respect
to the neutral axis passing through the cross-sectional gravity center and perpendicular
to the plane of the rod’s vibrations;

a; = 0,1m, ay = 0,5m, ag = 0,9m are the points at which the oscillators are mounted
(fixed);

by =0,1Ns/m, by = 0,1Ns/m, b3 = 0,1Ns/m are the viscous friction coefficients;
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c1 =0,1N/m, ¢ =0,1N/m, c3 = 0,1N/m are the stiffness coefficients of the springs

in the oscillators;

E =7-10'0N/m? is the Young’s (elongation) modulus.
The comparison of the data of computations conducted on the basis of the approach

proposed in the present paper for the first two eigenvalues

A1 = —0,255 425,839, Ay = —0,235+ 161, 938,

and the data of computations of the eigenvalues given in paper [18]:

w = —0,255 + 25,829,  wy = —0, 235 + 161, 941,

gives evidence of good coincidence of the results.
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MOAEJINPOBAHNE MEXAHNYECKUNX CUCTEM
IIOCPEJICTBOM OBLEJIVMHEHNA YPABHEHUN

C COCPEAOTOYEHHBIMU 1N PACIIPEJEJIEHHBIMUN
ITAPAMETPAMU

A.Jl. Muoicudon

B mamHoit ctarbe paccMaTpuBaeTcda KpaeBas 3a4ada Mg THOPUIHON cucTeMbl qudde-
PEHIMAJIBHBIX YPABHEHUH, TIPEICTABISIONEN co00H 0DODIIEHHYI0 MATEMATHIECKYIO MOIEE
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MATEMATNYECKOE MOJIE/INPOBAHUE

CHCTEM B3aHMOCBI3aHHBIX TBEPABIX TEJ, IPUKPEILIEHHBIX YIPYTO JIeMI(DUPYIOITHME CBA35I-
Mu K crepxkuio. Iloa rubpuaapivu cucremMamu fudOepeHnuaIbHbIX YPABHEHU TOHIMAETCST
cucrema qudhepeHnraIbHbIX YPABHEHUH, COCTOSINAs U3 OOBIKHOBEHHBIX NuhepeHInaib-
HBIX YPaBHEHHUI U ypaBHEHUI B YACTHBIX ITPOW3BOIHBLIX. B KadecTBe TEOPETHYECKUX OCHOB
WCCIIEIOBAHUSA KPAEBOH 3a1aun [Tt TUOPUIHOM cucTeMbl TudhhepeHuaTbHbIX yPABHEHWIH
MpeJIaraeTcs MEeTOl HAXOXKIEHUsT COOCTBEHHBIX 3HAYEHUI KpaeBoil 3amauun. CpaBHUTETb-
HBIf aHAJIN3 YUCJIEHHBIX PACYETOB, MPOBEIEHHBIX MPEJIOKEHHBIM METOJOM € PACYeTaMu
MPOBEIEHHBIMHU IPYTUMHU CIIOCOOAMHU, U3BECTHBIME U3 JUTEPATYPHI, MOKA3AJ JTOCTOBEPHOCTD
¥ YHUBEPCAJIBHOCTD MPEIIATaeMOro MOIXO0/Ia.

Karoueevie caosa: kpaesas 3adana; 2ubpudnas cucmema JuPdeperyuansvhol ypasHe-
HUll; COOCMEEHHDBIE 3HAMEHUS.
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