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Industrial Baltic sea water dynamics modelling program optimization and

parallelization is described. Program is based on solving the system of partial di�erential

equations of shallow water with numerical methods. Mechanical approach to program

modernization is demonstrated involving building module dependency graph and rewriting

every module in speci�c order.

To achieve desired speed-up the program is translated into another language and

several key optimization methods are used, including parallelization of most time-consuming

loop nests. The theory of optimizing and parallelizing program transformations is used to

achieve best performance boost with given amount of work. The list of applied program

transformations is presented along with achieved speed-up for most time-consuming

subroutines. Entire program speed-up results on shared memory computer system are

presented.
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Introduction

The article presents results of computer program modernization. This modernization
included rewriting program code to another language and accelerating it. Speed-up
was achieved by manual optimizing transformations and nested loops parallelization.
Assessment of labour costs for program modernization and the resulting performance
increase are presented.

Compiler transformations are not necessarily e�ective in all cases, so manual program
transformations are still valid despite the progress in compiler optimization [1].

This is a result of group of authors performing modernization of software
implementation for BSM-1 (Baltic Sea Model), which is currently running 24 hours a
day 7 days a week at the St. Petersburg Flood Prevention Facility Complex [2]. BSM-1
model is based on numerical integration of partial di�erential equations system based on
shallow water theory. The model is the evolution of a family of BSM (Baltic Sea Model)
models used within CARDINAL software system [3]. This article hereafter describes the
modernization process and its results, aforementioned software system is referred to as
"model program".

The particularity of the presented article lies in the fact that it describes program
optimization process based on optimizing transformations only, without the knowledge of
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the particular �eld software it is based on. Using knowledge from this �eld allows better
optimization of software than just working with the source program code [4], but it is more
time-consuming.

Current tool kit of software optimizing transformations contains numerous tools to
optimize nested loops, which is a reasonable focus for software based on mathematical
modelling methods. Nested loops in such programs usually take the largest part of
execution time. Their optimization is a priority task, which is solved by parallelizing and
other transformations. Currently the software performance is determined not only by code
parallelism but optimization of memory accesses [5�8] as well. Optimizations of memory
accesses include alignments [9], tiling (transition to block computations) [7, 10�13] and
unconventional array placements [14�16]. The best performance is demonstrated for the
programs that are parallel and optimize memory access simultaneously [6, 7, 17�20]. The
model software, which wasn't initially optimized in any way, had other time-consuming
parts in addition to nested loops. These parts included I/O functions, data structure
preparation and elementary mathematical functions.

The model program inherited CARDINAL complex main features. It was written
in Object Pascal language using Delphi 6 IDE and included graphical user interface for
setting the computational model and the main computational core. Only this core part
was subject to optimization.

The software model was subjected to numerous optimizing transformations, many of
which cannot be performed automatically by optimizing compilers [6, 7]. The task was
completed thanks to authors' experience working on Optimizing Parallelizing system [21].

1. Underlying Mathematical Model

Consider shallow water equations [3] in curvilinear coordinates in two-dimensional
form, that are being solved in the model software:
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ςt + Ux + Vy = ωs, (cH)t + (Uc)x + (V c)y = KcH∆c− λcH + csωs − fs,

where u, v, w(x, y, z, t) are velocity vector components in Cartesian coordinate system;
c(x, y, xz, t) is concentration; T (x, y, z, t) is water temperature; S(x, y, z, t) is salinity;
ς(x, y, t) is water level; h(x, y) is water depth; H = h + ς; g is free fall acceleration; V is
volume of water originating from internal sources in volume units per second; cs is sources
concentration; λ is non-conservative factor; kc, Kc are di�usion coe�cients in vertical and
horizontal directions; w0 is vertical speed sedimentation of suspended solids; K è k are
turbulent viscosity coe�cients in vertical and horizontal directions; PA is atmospheric
pressure; W is wind speed; ρ is water density; f = 2ω sinϕ is Coriolis parameter; U and V
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are total �ows (unit discharge); ωs is water volume coming from internal sources per unit
area per second; fb is bottom friction coe�cient.

2. Software Optimization Methods

The following is done to the model program:

1. Program pro�ling for typical input data sets.

2. Finding program hotspots based on pro�ling results.

3. Experimental attempts at hotspot optimization. Goal of these experiments was to
quickly identify the most e�cient optimization method for particular pieces of code.
Experiments are carried out for functions within source program or with the same
functions but separated into individual programs for simplicity.

4. Optimization of program hotspots with chosen methods. Resulting speed-up
measurement.

5. Testing the optimized program for correctness. Testing is performed by comparing
modi�ed functions with their original counterparts on the same input datasets.

6. Optimized program pro�ling to �nd new hotspots.

Operations mentioned above constitute an iterative development process which is
based on the source program. The process stops when the required criteria are met.

The program optimization consists of a set of operations that reduce program execution
time in typical use cases (on typical input data). Those operations may include:

1. Optimizing transformations including loop parallelization and other loop nest
transformations. It makes sense to separate program transformations into groups:

(a) Paralellizing loop transformations.
(b) Loop optimizing transformations such as �ssion, unrolling, invariant extraction,

etc.
(c) Operator-level parallelization.
(d) I/O optimization, including splitting I/O operations into separate thread.
(e) Other optimizing transformations, such as inlining, common subexpression

elimination . . .

2. Rewriting parts of it or entire program into another programming language.

3. Replacing program parts with third-party library function calls.

4. Testing resulting program correctness and performance.

Rewriting entire program to another language is perhaps the most expensive way to
increase performance. This, however, may improve other characteristics, such as ease of
support and reuse, apart from performance. Rewriting is justi�ed if the source program
language lacks comprehensive optimizing compilers, high-performance libraries or its use
is not justi�ed for some other reasons. In case of model software it was Object Pascal used
in Embarcadero Delphi 6.0 IDE. Main computational part was ported to C# language
for Microsoft .NET 4.0 platform, which was done for ease of maintenance as well as
performance boost.
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3. Labour Costs Distribution

It's important to identify where most of the labour and time will be spent during sizeable
program optimization. Working on model program showed the following main cost items:

1. Porting the program to another programming language.

2. Adding unit tests for all ported modules.

3. Pro�ling and �nding suitable optimization methods.

4. I/O optimization.

5. Computational functions optimization including parallelization.

6. Functional testing and debugging.

7. Performance testing and performance analysis on the target computing system.

In total, the cost of model program modernization amounted to about 60 man-months.
The labour costs distribution for the items listed above is shown on Fig. 1.

Fig. 1. Labour costs in model program modernization

4. Porting into C#. Results

Porting the model program into more modern language provided considerable
performance increase. Table 1 shows comparison of execution times for main computational
functions (that include nested loops), which took most of the program execution time.
Performance boost achieved through porting to C# is 45%. All of this boost is due to
better optimizing compiler for .NET platform. Compiler was able to perform inlining of
small functions called from inside nested loops, as well as other optimizations. Apart from
that, .NET standard library includes faster mathematical functions.
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Table 1

Speed-up due to rewriting main computing functions, sec.

TimeStep GetPStar GetQNew QStar PNew DryCells
Source program 644 167 180 85 78 111

Optimized program 501 144 149 66 58 61
Speed-up 1,28 1,16 1,2 1,28 1,34 1,81

5. Program Modules Dependencies

Porting tens of thousands lines of code to a di�erent language is quite an ambitious task
taking into account necessary testing. The model program was subdivided into modules.
Directed graph of modules dependencies was developed in order to determine module
porting order. Unit dependencies appear because of access to global variables, functions
or types. If unit A uses data types or functions declared in unit B, the graph has an edge
leading from A to B. Edges determine the order of porting modules: from two modules
the dependent one is ported later. This order simpli�es porting and testing. Modules
dependencies graph is similar to function call graph [22]. This graph for the model program
is shown on Fig. 2. Typically the module hierarchy contains service units with simple
auxiliary I/O functions and user input processing at the very bottom. It's reasonable to
start porting the program from the lowest hierarchy level, sequentially climbing up with
the completion of each level.
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Fig. 2. Some source code modules dependencies within model software computational
kernel

Porting order may be formally obtained as follows:

1. Construct the module dependency graph.

2. Construct a strongly connected components factor-graph for the module dependency
graph.

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2017. Ò. 10, � 1. Ñ. 113�124

117



A.P. Bagliy, À.V. Boukhanovsky, B.Ya. Steinberg, R.B. Steinberg

3. The resulting factor-graph is acyclic, therefore there is a tiered form for it. Find this
form. It has no edges between nodes within single tier and any edge goes downwards.

4. Modules porting order is given by tiers from bottom to top.

6. Program Transformations Used

The model program transformations used are listed in Table 2.

Table 2

Program transformations used

Transformation name Program parts being
transformed

Properties

Inlining Nested loops inside
hotspots, I/O, data

preparation

Done automatically by the
compiler for simple cases. Done
manually for some hotspots

Loop invariant extraction Nested loops inside
hotspots

Allows to parallelize some
loops due to data dependencies

elimination

Loop interchange Nested loops inside
hotspots

Changing the order of matrix
traversal which often bene�ts

performance

Loop unrolling Nested loops inside
hotspots

Decrease the added cost of loops

Instruction extraction
into a new function

Data preparation
functions

Improves code readability and
decreases its volume

Common sub expressions
elimination

Nested loops inside
hotspots

Common sub expressions could be
loop invariants that are possible to

extract

Loop parallelization Nested loops inside
hotspots

Done for loops without data
dependences that prevent parallel

execution

Asynchronous function
calls

I/O Allows to extract I/O
into separate threads

Dead code removal Data preparation
functions

Replacing global
variables by local ones

Nested loops inside
hotspots

Eliminates dependencies allowing
parallelization

Extension of scalars
(replacing a scalar

variable with an array)

Nested loops inside
hotspots

Eliminates dependencies allowing
parallelization
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Some transformations listed should be performed in speci�c order to obtain the highest
speed-up. For example:

1. Common sub expressions elimination.

2. Loop invariants extraction.

3. Loop parallelization.

Finding an optimal manual transformation order is easy in some basic cases,
while modern optimizing compilers lack such a mechanism. Optimizing transformations
interrelation resulting in �nal speed-up is a complex and less studied process.

7. Parallelization

Program hotspots usually contain nested loops that perform calculations over data
arrays. Parallelizing nested loops may provide the highest bene�t compared to other
program optimizations, but not all the loops could be parallelized due to data dependencies
between iterations.

While working on the model software it was impossible to apply automatic tools.
Manual data dependency analysis did not show any dependencies that could prevent
parallelization. The most time consuming loops were transformed into parallel form with
application of TPL (.NET Task Parallel Library). TPL is the main parallel execution tool
for Microsoft .NET 4.0 platform. TPL use is comparable with OpenMP in many cases,
keeping the code readability and maintainability.

Matrix elements are being read and written in parallelized two-dimensional loops.
Matrix traversal is performed through even rows or columns in each iteration. Loop
parallelization is performed as shown in Figure 3 for rows. Arrows demonstrate the order of
matrix elements being written. Points without arrows going to them are not overwritten.
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Fig. 3. Matrix element traversal order and its distribution into threads

Writing each row or column is separated into a parallel thread. This means outer
loop parallelization for a two-dimensional nested loop. Table 3 demonstrates one loop
nest before and after parallelization. Main computational functions speed-up as the result
of parallelization is shown in Table 4. Substantial performance boost was obtained. But
the performance increases disproportionately to the thread number increase due to low
memory access speed compared to the speed of calculations inside the loops.
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Table 3

Loop parallelization example

Source loop Parallel loop

i n t i ;
i = g . Lbe + 1 ;
whi l e ( i <= g . Len − 1)
{

i n t j = g .Nbe ;
. . .
whi l e ( j <= g .Nen)
{

. . .
}

}

i n t i ;
i = g . Lbe + 1 ;
i n t s t a r t I = ( g . Lbe + 1) / 2 ;
i n t f i n i s h I = ( g . Len − 1) / 2 + 1 ;
P a r a l l e l . For ( s t a r t I , f i n i s h I , index =>
{

in t i = index * 2 ;
i n t j = g .Nbe ;
. . .
whi l e ( j <= g .Nen)
{

. . .
}

}

Table 4

Main functions speed-up due to parallelization on 4-core processor, sec.

Function name Sequentially In parallel on 4
cores, 8 threads

Speed-up

GetPStar 75,8 22 3,4
GetQNew 81,8 25 3,3
QStar 32,9 8,4 3,9
PNew 23 6,3 3,6
WaterLevelStar 4,8 1,7 2,8
WaterLevelNew 4,8 1,6 3,0
DryCells 33 11,2 2,9

Conclusion

Main results of this work are:

1. New implementation of BSM-1 was created. It performs 3-7 times faster in typical
use cases.

2. Structured approach to old software modernization is described.

3. Set of practical software optimization methods is listed.

The performance boost obtained is shown on Fig. 4. Execution time shown is for 7
di�erent data sets while using di�erent numbers of threads. Performance was measured
on 6-core Intel Core i7-3930K processor with 8GB DDR3-1600 memory in single channel
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mode. This computer system provided best results for optimized program. One can see
that performance boost was largely not achieved with parallelization: optimized program
operates sequentially 4 or more times faster than the original. While testing the optimized
program on several computing systems discovered performance di�erences obviously were
dependent on the following system features:

1. Memory Bandwidth.

2. The number of CPU cores.

3. Memory hierarchy, including di�erent levels of cache.

4. CPU performance.
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Fig. 4. BSM-1 speed-up for the set of 7 typical tasks

One needs to take these di�erences into account when optimizing software for high-
performance computing system (server, cluster or supercomputer).
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ÓÑÊÎÐÅÍÈÅ ÌÎÄÅËÈ ÄÈÍÀÌÈÊÈ ÂÎÄÍÛÕ ÌÀÑÑ
ÁÀËÒÈÉÑÊÎÃÎ ÌÎÐß

À.Ï. Áàãëèé, À.Â. Áóõàíîâñêèé, Á.ß. Øòåéíáåðã, Ð.Á. Øòåéíáåðã

Îïèñûâàåòñÿ îïûò îïòèìèçàöèè è ðàñïàðàëëåëèâàíèÿ ïðîìûøëåííîé ïðîãðàììû

ìîäåëèðîâàíèÿ äèíàìèêè âîäíûõ ìàññ Áàëòèéñêîãî ìîðÿ, â îñíîâå êîòîðîé ëåæàò ÷èñ-

ëåííûå àëãîðèòìû ðåøåíèÿ ñèñòåìû äèôôåðåíöèàëüíûõ óðàâíåíèé â ÷àñòíûõ ïðîèç-

âîäíûõ òåîðèè ìåëêîé âîäû. Äåìîíñòðèðóåòñÿ ìåõàíè÷åñêèé ïîäõîä ê ìîäåðíèçàöèè

ïðîãðàììû, âêëþ÷àþùèé ïîñòðîåíèå ãðàôèêà çàâèñèìîñòè ìîäóëåé è çàïèñü êàæ-

äîãî ìîäóëÿ â îïðåäåëåííîì ïîðÿäêå. Äëÿ äîñòèæåíèÿ æåëàåìîãî óñêîðåíèÿ ðàáîòû

ïðîãðàììû èñïîëüçóåòñÿ òåîðèÿ îïòèìèçèðóþùèõ è ðàñïàðàëëåëèâàþùèõ ïðåîáðà-

çîâàíèé ïðîãðàìì. Îïòèìèçàöèÿ è ðàñïàðàëëåëèâàíèå ïðîãðàììû ãàðàíòèðóåò äîñòè-

æåíèå óâåëè÷åíèÿ ïðîèçâîäèòåëüíîñòè ïðè çàäàííîì îáúåìå ðàáîòû. Ïðåäñòàâëåí ðÿä

ïðåîáðàçîâàíèé ïðîãðàììû ñ ïîëó÷åííûìè ðåçóëüòàòàìè ïî óìåíüøåíèþ ñêîðîñòè ðà-

áîòû íàèáîëåå òðóäîåìêèõ ïðîöåäóð. Êðîìå òîãî, ïðèâîäÿòñÿ ðåçóëüòàòû ïî óñêîðåíèþ

ðàáîòû ïðîãðàììû â öåëîì íà âû÷èñëèòåëüíîé ñèñòåìå ñ îáùåé ïàìÿòüþ.

Êëþ÷åâûå ñëîâà: ïðåîáðàçîâàíèÿ ïðîãðàìì; îïòèìèçàöèÿ ïðîãðàìì; ðàñïàðàëëå-

ëèâàíèå ïðîãðàìì.
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