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This paper describes a method of use of equations in M.F. Shul’gin’s form in Lagrangian
variables for steady motion stability and stabilization problems of systems with geometric
constraints. These equations of motion are free from Lagrange multipliers; we substantiate
their advantage for solving stability and stabilization problems. Depended coordinates
corresponding to zero solutions of characteristic equation are allocated in the disturbed
equations of motion. These variables are necessarily present in systems with geometric
constraints for any control method. It is suggested to present equations of motion in Routh
variables for finding stabilizing control coefficients; Lagrangian variables are more useful
for constructing an estimation system of object state. In addition to previous results,
we evaluate the ability to reduce the dimension of measured output signal obtained in
conformity with the chosen modelling method. Suppose the state of system is under
observations and the dimension of measurement vector is as little as possible. Stabilizing
linear control law is fulfilled as feedback by the estimation of state. We can determine
uniquely the coefficients of linear control law and estimation system can be determined
uniquely by solving of the corresponding linear-quadratic problems for the separated
controllable subsystems using the method of N.N. Krasovsky. The valid conclusion about
asymptotical stability of the original equations is deduced using the previously proved
theorem. This theorem is based on the nonlinear stability theory methods and analysis
of limitations imposed by the geometric constraints on the initial disturbances.

Keywords: geometric constraints; redundant coordinates; M.F. Shul’gin’s equations;
stability; stabilization; steady motion.

Introduction

Working out of control methods for nonlinear dynamic systems (control "in the large"
[1]) is a typical issue both of modern control theory and technical practice. At the same
time optimal utilization (energy, informational, computational and so on) at every mode of
systems operation remains the most significant requirement for the modern and perspective
automation. In this context, an optimization that is realized in real time during a control
process becomes the central problem of the modern stability theory.

In practice, information about an object state is presented as a measurement vector.
Generally, the dimension of this vector is much less then the dimension of the state variables
vector. So an important stage of applied problems solution is analysis of experimental data
to make estimation of the controlled object state optimal and suboptimal [1,2]|. Thus,
constructing of nonlinear mathematical models and practical application methods are
required for control analysis of modern technical devices. The methods are used for possibly
complete employment of properties of an object proper (without any additional actions)
motions (modes of operation), reducing the number of equipped actuators (dimension of
control), and for decreasing measuring information quantity for control law design.
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Review of Previous Results

There are many alternatives to make a valid choice of a dynamics modelling method
for a certain class of problems in analytical mechanics. Ease of use and simplicity of the
model directly depends on the chosen form of equations of motion and the type of variables
these equations consider.

As it is well known |3, p. 56|, Lagrangian, Hamilton’s variables or some other
parameters can be assumed as main variables describing the state of a mechanical
system with independent Lagrange’s coordinates. Routh suggested to use a combination
of Lagrangian and Hamilton’s variables. Routh’s equations are equal to both equations
presented in Lagrange’s form and equations presented in Hamilton’s form [3, p. 7]. Which
method you use will be based upon your requirements.

If a system is a subject to constraints it makes the procedure of a choice of the
most suitable generalized coordinates more complicated. In the article it is supposed
that configuration of a system is restricted by geometric constraints. In numerous actual
technical tasks, particularly, in the problems of control for multilink manipulators and
other mechanotronic systems it is advisable [4-8] to describe configuration of mechanical
component of the system by n + m parameters, where n is the number of the system
degrees of freedom.

Then m of these n + m parameters are called redundant coordinates. There are m
independent equations that include these n + m parameters.

O(Fy, ..., F)

Fy(qi,- - Guim) = 0, kK = 1,m; rank = m. 1
k(Q1 Gn+ ) a(q1,---q'n,+m) ()

Eliminating of the dependent coordinates from (1) is quite difficult and in many cases
leads to cumbersome formulas, especially when trigonometrical functions [8, p. 288] are
included in the equations.

It is useful to consider systems with geometric constraints as systems with redundant
coordinates. Numerous works on analytical mechanics were devoted to the dynamics of
such systems. At the same time the stability and stabilization problems of steady motion
have not been studied enough for systems with redundant coordinates despite the great
theoretical and practical significance.

Different forms of equations of motion [4-7] were analyzed in [9,10] for systems with
geometric constraints. It was shown that accurate mathematical model can be constructed
relatively simple if equations in M.F. Shul'gin’s form are used. It is also necessary to
take into account geometric constraint equations differentiated once with respect to time.
Thus, in general, a common examination methodology for the stability and stabilizations
of steady motions problems was created for systems with geometric constraints. Theorem 1
about asymptotical stability was proved in [10] using the theory of critical cases [11-13] and
taking into account the restrictions on the initial disturbances. It was proved in theorem
1 that an equilibrium position of a system with redundant coordinates is asymptotically
stable if the number of zero roots of characteristic polynomial is equal to the number
of constraints and the real parts of the other roots are strictly negative. A number of
theorems was proved |14] about the sufficient conditions of solvability by the method
[15,16] for stabilization problems on the assumption of incomplete state information. These
theorems are based on theorem 1 and Malkin’s theorem about stability at permanent acting
disturbances [12, p. 315-317|. Effectiveness of the developed method was shown [17] by the
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example of an accurate solving the equilibrium position stability and stabilization problem
of one of the most popular bench system called BALL AND BEAM [18,19].

Problem Statement

In general, considering systems in Routh’s variables essentially simplifies |3, 10,
14-16, 20-22| the procedure of linear stabilizing control coefficients determination for
stabilization problems. But Routh’s variables are very disadvantageous [21,22] for the
control implementation while solving the asymptotic stability problems with respect to
all variables on the assumption of incomplete state information. In this case required
information cannot be obtained directly from the information sensors. Using Lagrangian
variables gives additional abilities to reduce the dimension of measuring vector. But the
procedure of stabilizing control coefficients determination is essentially more complicated
if Lagrangian variables are used. Application of this variables considerably complicates the
analysis of original (nonlinear) equations structure in the system closed by the designed
control law. When control acts on a part of components of a cyclic coordinates vector in
any way the number of zero roots of the characteristic equation is more then the number
of geometric constraint equations.

In the work we suggest the approach based on application of different mathematical
models of the same controlled mechanical system at different stages. Routh’s variables
can be used to design the control law that stabilizes the prescribed undisturbed motion.
Lagrangian variables are handy for getting the information about the state of the system.
The first stage, the determination of the control law coefficients when the dynamics is
described in Routh’s variables, has been studied [14-16] quite extensive. So this work
is devoted to the constructing of a nonlinear system dynamics model for systems with
geometric constraints in general case if equations of motion are presented in Lagrangian
variables. Then we develop the method [15,16,21] for dataware of the control loop in the
stabilization problem on the assumption of incomplete state information.

1. M.F. Shul’gin’s Equations in Lagrange’s Variables
1.1. General Case

Suppose configuration of a mechanical system is specified by parameters qi, ..., ¢nim,
where n is the number of the system degrees of freedom. The system configuration is limited
by m independent relations (1) (geometric constraints) between qi, . . . ¢u1m. Without loss
of generality coordinates ¢,.1,...¢n+m can be considered as redundant. For convenience,
introduce some vectors (the prime denotes transposition):

" =(q1, @), S = (Git, Gnim), ¢ =(0"8), F =(F,.. . F,); (2)
Then, in the vector-matrix form equations (1) can be written as
F(r',s")=0. (3)

Kinematic (holonomic) constraints can be obtained by differentiating (3) with respect
to time:

oF . OF
S (4)
or 0s
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The depended velocities vector can be expressed from (4):

The general view of the kinetic energy is:

L., L .
T=T+T+T=5¢alg)i+d (@)q+To(q), (6)
- Ary  Qrg . . .
where a = ( a a ) 1S a symmetric matrix,
a1 (q) - an(q) Aint1) (@) 0 Qigrm) (@)
arr (q) = E E : , Grs(q) = : E : ;
A1) (@)~ Gty ntm) (@) ) i
A (n+m)(n+1) (q) - A (n+m)(n+m) (q)

Eliminate the depended velocities (5) from expression (6) for the kinetic energy:

T (q,7) = T3 + Ty + To = 3'a(q) 7+ d' (9) 7 + T (q) )
a(q> = &7“7“ + 2 ' &TSB + B,&sst d/ (q) = d;" + d;B

Suppose the system is affected by potential forces with energy II(¢) and nonpotential
position forces Q, (q,4), Q. (q,q) corresponded to coordinates r,s. Let Q*(¢,7) and
Q%(q,7) denote the nonpotential forces after eliminating the dependent velocities using
(5). Then the vector-matrix equations in M.F. Shul’gin’s form [4] in Lagrangian variables
can be written as

d * * *
- —ar (). ©)

at or  or
where L*(q,7) = T*(q,7) — II(q) is the Lagrange function.

Remark 1. Equations (8) can be considered as a special case of Voronetz equations
for nonholonomic systems with integrable kinematic constraints. This fact gives an
opportunity to apply all methods of researching nonholonomic systems dynamics. From
the other side, this equations have fundamentally different structure due to the lack of
nonholonomic terms. Consequently there are some interesting features, which should be
examined.

1.2. Shulgin’s Equations in the Presence of Cyclic Coordinates

Suppose there are cyclic coordinates in the sense of [4] among the independent

parameters qi,...,q, describing the system configuration. Then, the explicit form of
vector-matrix equations of motion must be deduced.
Let 8 = (qit1, - - - » qn) denote a vector of cyclic coordinates and o = (qq, ..., q) denote

a vector with components consists of the rest of the independent coordinates. So the vector
r of the independent coordinates is: 7 = (o/ﬁ’). Then, since coordinates [ are cyclic

oF 0B orT o1l
2 -0, —=0, —=0, — =0. (9)
9p 9p 9p 9p
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Consequently, the depended velocities are evaluated from geometric constraint equations
(1) differentiated with respect to time as follows:

OF . OF . . OF\ ' (OF . :
w as = S§=— (@) (@) o = Ba<04, S)CK. (10)

Let the kinetic energy have the form similar to (6) but here

doza daﬁ aas o B Cgoa
EL(O&, 8) = &5a &55 &55 , = ﬁ > d = dﬁ
dsa asﬁ aJss s s

After eliminating the dependent velocities using (10) the kinetic energy expression is:

. Lo oo Gop Q ;o Q
Tf§<a ﬁ)(aﬁa aw)(ﬁ’)‘L(da d5)<6)+TO’ (11)

where )
Ao = Qoo + 20058 + B assBau Qap = aaﬁ + B asﬁ; Ao = Anp;
agg = agg; da = d +d. B dﬂ = dﬂ
Lagrange function is L*(a, s, d, B) = T* — II. If there are not nonpotential forces
corresponded to the cyclic coordinates equations can be written as
d oL* OL* , [ OL* d OL*
dt 0&  Oa Qo t a( +Q)’ dt 9 (12)

It is handy to write equations (12) in the scalar form for the further analysis of the system:

.. .. Oays da,y(g 1 Oays 1 Oays \ - -
(y5Gs + oo + ( + a0, Bux = 3% — 2Buvag, ) bxdst

Oa~o Oa~o Oayo Oayo s L N
+ ( ot o B — o Buvﬁ) Uxo — 3 (8 + Bmaaqﬂ ) Irqot

oqu 0qy
ady | od ad ady \ - ddy ady \
+ (@w—ngm Bt b (3 1) )
To—1I T «
- aoqw — By ao Q; + BMQ
.. .. da, da, Oagy 8a - ..
Aesqs + Qeofo + ( £ 4 563 ) qXCM + ( Lo + 5= B,ux) dyqo+
+ (adf 9 Buy ) dy = 0.

Repeated indexes are summed over the values: v,0,x = 1,...,l; &o17 = [ +
L...,n; pw,k=n+1...,n+m.In addition to equations (13) it is necessary to take into

account differentiated geometric constraint equations (10) or in the scalar form
Gu = Buxy- (14)

As obviously follows from (12) the system has cyclic integrals. Holonomic systems always
[3-5] have steady motions:

& =0; o= qay= const; ﬁ = cg = const s = 55 = const. (15)
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Constants ayg, cg, so can be determined from

(%), + 8o (%) ) oo = ((38), + 800 () Jm

— (250) = B (0) (Z5R) = Qila0: 50,0, ¢5) + By (0)Q (o0, 50,0; )

Notation (...)o n B,,(0) means that the expressions are calculated at a steady motion (15).

Remark 2. According to (16) there is a system of | equations with respect to n + m
unknowns. It is necessary to take into consideration the geometric constraint equations
(1) as before. Thus, the dimension of the manifold of holonomic systems steady motion is
more or equal to n — [, where n — [ is the number of the cyclic coordinates.

Remark 3. Stability of the system motion in regard to cyclic 1mpulses dlrectly follows

from the equations of motion (12). Steady motion is not stable with respect to the cyclic
coordinates in the general case (in the case of nonasymptotic stability with respect to the
cyclic velocities). If we use control that provides an asymptotic stability with respect to
the cyclic velocities, unperturbed steady motion will be stable with respect to the cyclic
coordinates.

2. Stabilization of a Steady Motion of Systems
with Geometric Constraints under the Assumption
of Incomplete State Information

2.1. Equations of Disturbed Motion in the Neighborhood of Steady Motions

Introduce some initial disturbances: « = ag+x; s = so + y; ﬁ = cg +w and assume
that nonpotential forces corresponding to the coordinates of position have the following
structure:

QL = faa + fass T Gaa® + gass + QP; QF = foalt + fusb + gsatt + gsss + QP (17)

Coefficients are calculated at a steady motion (15). Let the upper index (2) denote degree
of lowest term in the expansion of the corresponding expression.

Remark 4. This form (17) of forces is chosen for simplicity. The suggested methodology
allows to work with nonpotential forces of any form.

Then, using (13), the vector-matrix equations of disturbed motion with the first
approximation separated can be written as

Ayi 4+ Aqh + (c/ v, +D, — Fa) T+ (023\112 + Dg — FB) w—+
e (80), (1), + o v
|G+ (52) (8), +BuO)Ci+ cpWies = G|y = XP(wydw) (18)
A3$ -+ A4U) + (CB\Dg + Dﬁ) T = X22)<-T7y7 .I",’U));

§ = Ba(0)i + B (x,)i; B (2,y) = Ba(ao + 2,50 + ) — Ba(0);
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where

Ar = [lays(0)]|, A2 = |lay (0)[], As = [lacs(0)]l, A1 = [laq-(0)];
Crl:<82W> 02: 2w 04: 62W> ’ 0320;7

8‘1)(8‘17 O 8‘]x8q” aqMafh
od od od O0dy O0dg
a = ||aq; + anBux B 8(;; B Bwaq ||07 Dp = ” - <aq + Bwaq#> ”07

Fa:faa+fas oz( )+B;(O,>fsa+Ba( )fss a( )7 /F,B_faﬁ"i_B;(O)fsB;
Ga = Jaa + B,(0)gsa, Gs = Gas + B,(0)gss,

Odayo 8 - Oaxo Oaxo
Wy = || av 521 By — aaT — By z;lq los W2 = [[vr(0)],
Mg

TO TOo 7o
%=(%+%%%wzﬂwmw%ﬂ
Uy = ’ . Dy =13 + 5= Buxllo, W= H To.

H07

8a70 8aTU
0qx + B Oqu

Then, following [21], determine variables corresponding to zero roots of the characteristic
equation via the linear substitution [23]:

z =1y — B,(0)x. (19)
System (18) can be written as

A+ Ay + (O — Fo) 2+ (I' = Fp)w + Kz + Sz = Xo(?)(a:, 2, T,W); (20)
Asd + Ay + Pt = Xg)(x, Yy, T,w), Z= B&l)(a:, 2)x;
(I)a = C/qul + Da, q)ﬂ = Clﬁ\Ijg + D57 I'= C;;qJQ + Dﬁ;
K = C) + B,(0)Cy + C3B,(0) + B.,(0)C4B,(0) + CP+
+c3Wics + c3V3csBa(0) — Go — G B4 (0);

er = (%), (50 ), + (5), (850), B0

Notice that the matrices G, G, Fy,, Fj are composed of coefficients of linear in position
coordinates and velocities terms of the nonpotential forces Q,, Qs. Also it is necessary to
focus attention on the matrix C2. Tts components depend on the second-order derivatives of
geometric constraint equations (1) and can be lost in case of linearization of the geometric
constraint equations. Components of the matrices @, ®s, I depend (in contrast to [20,24])
not only on the quadratic in velocities terms of the kinetic energy but on the linear in
velocities of position coordinates terms, also.

Thus, we deduced the general form of the mathematical model for the stability
and stabilization problems of steady motion for systems with geometric constraints and
n — [ independent cyclic coordinates to nonlinear vector-matrix equations in Lagrangian
variables. It is significant that for the construction of the model substitution (19) was
executed to evaluate variables z corresponding to zero roots of the characteristic equation,
which are always present. Then, it is possible to deduce some statements about sufficient
conditions of stability and instability of undisturbed stationary motion by determining
the position of the other roots of the characteristic equation, analogously to [22]. In
the case of instability it is possible to consider a stabilization problem of undisturbed
motion. Instability takes place if det K < 0, in particular. The information about the
state vector of the object can be incomplete. For definiteness let’s consider one of the
possible stabilization problem statements. For simplicity we examine the simplest variants
of measurement vector structure.
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2.1.1. Stabilization Control by the Cyclic Coordinates under the Assumption
of the Incomplete Information About the State

Suppose the control action u is acted upon by all components of cyclic coordinates
vector. Then system (20) with this control takes the form

A1$+A2w+ ((I)a _Fa)x+<F_Fﬁ>w+K$+SZ :Xg)(x,z,j:,w);

21
Asii + Ayt + ®pi = u+ X752 = B (x, 2)i. (21)
The canonical first order system derived from equations (20) is:
§=NE+Vut 2z +E0(2), 2= BP(e,2)a, € = (2),0); (22)
0 E) 0 0
N=| -0 K —b(Py—F,) —bPs -0 (I' =Fs) |, V=1| b |,
by K —by(®y — Fp) — by®s  —bs(I — F) by
0 ! b b
Z=| -bS |, EO= [ bXP +hxP |, A= ( by by ) ,
—b3S by X + by X o

where by, by, b3, by are submatrices of dimensions | x [, [ x (n — 1), (n — ) x [ and (n —
) x (n — 1) accordingly. Then introduce the simplest variants of matrices for coefficients
of measurement vector linear approximation o; = »;&:

Si=(E 00); S5=(0 E 0); S5=(00 E,y).

The estimation system for obtaining the required information to form the stabilizing
control is:

£=NE+Vu— I (zké—ak), £ = <xx1w> (23)
Theorem 1. If for system (22) the following conditions

rank (V. NV N?V .. . N""W) =n+1; (24)

rank (Z;g N,Z;,€ N”+l_12;€> =n+l; k=1,23, (25)

hold, then there is a linear control R
up = A&y (26)

stabilizing steady motion (15) to asymptotic stability with respect to all variables. Here ék
is estimation vector of a state of system (22) obtained from the measurement oy by the
solution of the stabilization dual problem

,llk = N/,uk + E;CV]C, V = L;g,uk, k= 1, 2, 3. (27)

Proof. Separate the controllable subsystem

£=Né+Vu (28)
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from system (22). The observability condition (25) of subsystem (28) is the sufficient
condition of the ability to determine uniquely the matrices Ly in (23) by solving dual
linear-quadratic problems using the method of N.N. Krasovsky [12, p. 475-514] for systems
(27). Thus, if the conditions (24), (25) hold there are [25] matrices A, and Ly such that
the real parts of the roots of systems (28) and (23) characteristic equations are negative.
The components of the matrices Ay and L, can be determined uniquely by solving the
corresponding linear-quadratic problems using the method of N.N. Krasovsky. As the
structure of the closed nonlinear system (22) meets the conditions of theorem 1 [10] it is
asymptotically stabilized by the control law (26).

O
Remark 5. Obviously, depending on k, we can say which rows of matrix N are
determinative for the observability conditions fulfillment: if & = 1 (position coordinates
perturbation) the first [ rows of NV are significant, if £ = 2 (cyclic velocities) then the next
[ rows of N and, finally, if k£ = 3 (depended coordinates perturbation) then the last n — 1
rows of IV are determinative.

Remark 6. In particular, the required condition for building the estimating system
by the developed method cannot be fulfilled if I' — F3 = 0. An analogous result for
holonomic systems with independent coordinates and the kinetic energy T' = T, was
obtained in [24]. In this case the structure of a measuring vector should be changed.
One of the possible variants is adding to the vector some components of the velocities
vector. In principle, in Lagrangian variables all components of this vector can be directly
measured. Thus, the measured signal can comprise disturbances of the cyclic velocities,
i.e., if the estimation system is not constructed in Routh’s variables the structure of the
measurement vector can be essentially different (compare with [14-16,21,22]). In the first
approximation the matrix N characterizes the proper (uncontrolled) motion of the system.
Selection of components of velocities disturbances from the measurement vector depends
on its structure. The minimal dimension of the measurement vector is determined [26] by
the number of nontrivial invariant polynomials of the matrix and corresponded hardware.
The dimension of the control vector due to the chosen way of stabilization and types of
variables in the problem is equal to the number of the cyclic coordinates and cannot be
decreased (compare with [14]).
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O MATEMATNYECKOM MOAEJINMPOBAHUN JTNMHAMUWUKN
CUCTEMbBI C I3BBITOYHBIMU KOOPAMHATAMMN
B OKPECTHOCTH YCTAHOBUBIIINXCS ABUKEHUN

A. 4. Kpacuncxuti, A.H. Uavuna
MockoBckuii aBuanuonubiit uacTuTyT, . MockBa

B nepemennbix Jlarpanxka paspabarbiBaeTcs IpUMeHEHNEe CBODOIHBIX OT MHOXKHUTEEH
CBsi3eil BEKTOPHO-MATPUYHBIX YPABHEHUI JBUKEHUS K 337a9aM YCTONYUBOCTH U CTADUIIHU-
3alldU YCTAHOBUBINUXCS JIBYKEHUI CUCTEM C FeOMETPUYECKHMHU CBa3AMU. B ypaBHEeHUsIX
BO3MYIIIEHHOTO JIBUKEHUS BBIIEISIOTCA 00S3aTEIbHO MPUCYTCTBYIOIIUE TIPH JIFOOOM CITOCO-
6e yIpaBJ/ieHUS MEPEMEHHbIE — 3aBUCUMBIE KOODIUHATHI, COOTBETCTBYIOIIUE HYJIEBBIM KO-
HSIM XapPaKTEPUCTHIECKOro ypaBHeHus. OOOCHOBBIBAIOTCS MPEUMYIECTBA, UCIOIb30BAHMS
ypasHenuit B popme, npemroxkennoit M.@. [Mlyasrursiv. PazpabaTsiBaeTcs MOIXOI, OCHO-
BaHHBIN HA TPUMEHEHUY MOJIETN B TIepEMEHHBIX Payca Ha arane onpenenenus Ko3bhumneH-
TOB CTAOUIM3UPYIONIETO YIIPABIEHUsT U MOJEIN B TEePEMEHHBIX Jlarpan»Ka, [1Jisi TTOCTPOEHMST
CHCTEMBI ACHMITTOTHIECKON OIEHKH (DA3OBOTO COCTOAHUS 00BEKTA. AHATNBUPYIOTCS OO~
HUTEJIbHBIE B CDABHEHUU C PAHEE TIOJYUYEHHBIMU PE3YJIbTATAMU BO3MOXKHOCTH COKDAIIEHUS
pasMepHOCTel BEKTOpa U3MEPeHNUil, TOCTABIAeMbIe BEIOPAHHBIM CIIOCOGOM MOIEINPOBAHMA.
Crabunu3upyrolnee JUHEHHOE YIIPABJICHNE PEAJIN3yeTcss B BUIE OOPATHOI CBA3M IO OIEHKE
$a30BOr0 COCTOSHUSA, TOJYUIEHHON MO W3MEPEHUIO BO3MOXKHO MEHbIEl pPa3MepHOCTH.
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MATEMATNYECKOE MOJIE/INPOBAHUE

KoaddbunmenTsr yrnpaBjienns U CHCTEMbI OIEHUBAHUSA OINPEIEISIOTCH DEIIEHNEM MEeTOIO0M
H.H. KpacoBckoro COOTBETCTBYOIMINX JIMHEIHHO-KBAAPATHIHBIX 3371349 [JIsi BbIIEISEMbIX
VIIPABJISIEMBIX MOJCHCTEM. J3AKJIIOUEHNE 00 ACUMITOTUYECKON YCTOWYMBOCTH B CHJIY ITHUX
HEeJIMHEUHBIX YPABHEHUN ClleflyeT N3 paHee JOKA3aHHOU TeopeMbl, OCHOBAHHONU Ha METONAX
HEJIMHEHHON TeOPpUN yCTONYNBOCTH U aHAJIN3E YCJIOBHUHI, HAKJ/IAABIBAEMBIX M'€OMETPUICCKIMNA
CBA3AMH Ha Ha4YaJbHbIE BO3MYIIEHUA.

Karoueene caoa: zeomempuneckue c6aA3u; u3bbimownove KoopIUHAMDL, YPAEHEHUA
M. ®. Hlyaveuna; yemotduusocms; cMaOUuIUSAUUA; CMAUUOHAPHBLE JSUNCEHUA.
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