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In the three-dimensional statement, we consider the Brinkman equation together with
the equation of heterogeneous heat transfer for an unidirectional flow of the Newtonian fluid
under laminar regime through horizontal porous channel having a constant rectangular
cross-section with known thermal flows at the boundary and small values of the Darcy
numbers. Due to the linearity of the formulated system of model equations, we obtain
analytical solution of the system using the Laplace and Fourier integral transformation.
The obtained solution allows to estimate the length of the input hydrodynamic section,
the coeflicient of hydraulic resistance, and the local Nusselt numbers. The results obtained
for the hydrodynamic subproblem with a large porosity and thermal subproblem with a
stationary temperature field agree with the classical data.

Keywords: porous medium; convective heat transfer; rectangular channel; coefficient of
hydraulic resistance; initial hydrodynamic section.

Introduction

The most effective active method to intensify a heat transfer in heat exchangers of
different energy systems is the use of porous mediums as fillers of the channels through
which the fluid (gaseous) heat carriers with simultaneous transfer of heat are transfered
[1]. The role of this intensification method significantly increases, if powerful heat flows
are removed from the compact heat-stressed surfaces. For example, in electronic miniature
devices the electromagnetic energy dissipates into thermal energy [2]. In order to choose
the constructions of compact heat exchangers correctly, the analysis of transfer phenomena
in the exchangers requires an estimation of the heat transfer in the three-dimensional
statement, taking into account the hydrodynamic structure of flow in the input section of
the porous channel. Therefore, the identification of hydrodynamic characteristics of porous
heat exchangers in the form of regular parallelepipeds is necessary [4]. Up the present, the
heat transfer in the porous channel having rectangular cross section was not considered [5].
The papers [6, 7| are among the first publications, where the problem was solved on the
basis of the stationary Darcy — Brinkman equation in the Stokes approximation and the
one-temperature model of heat transfer with different boundary conditions for the constant
axial heat flow. The experimental studies show that we should abandon hypothesis about
local thermal equilibrium between the porous filler and fluid (gaseous) heat carrier [8].
Therefore, under the same assumptions as in [6, 7] and within the framework of linear
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statement of the problem, the possibility to obtain a solution using the two-temperature
model of the heat transfer is shown [9]. However, according to [10], if we do not accept
the above simplifications, then the analytical solution is difficult to be obtained in this
statement and it is necessary to use the numerical integration. For low porosity, the velocity
profile of the heat carrier is determined almost instantly in the input section of the porous
channel [11]. However, the appearence of such a filler as metal foam with a high degree of
porosity [12] additionally requires to estimate the possible influence of the hydrodynamic
initial section on the heat transfer in the porous channel.

In this connection, we analytically analyze the heat transfer of the mass in the
rectangular porous channel under the laminar flow of the heat carrier within the framework
of the Brinkman approximation of the Darcy — Brinkman — Forchheimer equation and the
two-temperature model of the heat exchange in a wide range of the main parameters
variation. Also, we determine the conditions under which the influence of the length of the
hydrodynamic initial section on the heat transfer can be neglected.

1. Basic Equations and Assumptions

According to [13], we represent the physical model of a porous medium in the form of
a dense non deformable packing of spheres. The emptiness of the packing is connected and
filled with moving Newtonian fluid without phase transitions in Laminar regime under the
action of an applied pressure gradient.

The hydrodynamic subproblem is described within the framework of the Darcy —
Brinkman — Forchheimer phenomenological model by the Xu — Cheng equations [14],
obtained by the method of volume averaging:

V-V =0, (1)
1% N bV |V

MfK Pr \/F

here 7 is time; py, py are density and dynamic viscosity of the fluid; ¢ is porosity; V

is vector of the fluid velocity; g is vector of the free fall acceleration; p is pressure. The

permeability of a porous medium is determined from the modified Kozeny — Karman
equation [15]
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K =&*d2/[150 — (1 —¢)],
the Forchheimer friction factor is
b~ 0,00117d,/ (1 —¢),

where d, is a number-average diameter of spherical particles in the porous layer.
The temperature fields are determined from the equations of the Schumann two-
temperature model [16]:

for a fluid
Oty -
= (pey)y L 2 (pey) V- Vtp = V- (M @ Vi) & gy (8 — 1) 3)
for the skeleton of a porous medium
(1-2)(pey), 22 = V- (32 0 V) F agany (1~ 1) (@)
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where A/, A\ are tensors of the effective heat conductivity coefficients of the fluid and the
material of a porous body skeleton, respectively; t¢, t; are temperatures of the fluid and
the skeleton of a porous body, respectively; o,y is a coefficient of the heat transfer between
the liquid phase and the skeleton of a porous body; asf is characteristic area of the wetted
surface in a porous body; ps, ¢ps is density and mass heat capacity of the skeleton of the
porous body; ¢, is mass heat capacity of the liquid.

We assume that the thermophysical parameters in (1) — (4) are homogeneous in spatial
coordinates and do not depend on temperature. In this case, according to [17],

asy =6 (1—¢) /dpa Qsf = Ay [2 +1 1Pr01/3 (Pf “7‘ dp/'uf)o’ﬂ /dp7

€+ (071 %0,5) P <M)

M =
€ lU/f

Af, A= (1—¢)As,

where Pt = piyc,r/As, Af, As is heat conductivity of the fluid and the skeleton of a porous
body, respectively.

The phenomenological nature of the model in a porous body allows to formulate the
boundary conditions within the framework of the classical analysis of the problems of heat
and mass transfer for homogeneous media [18].

Despite the simplified formulation of the problem, the integration of the system (1) —
(4) with heat boundary conditions of the first or second genus on the side of the cooled
surface causes the same difficulties as the joint integration of the Navier — Stokes and
the heat transfer equations [19]. An overview of numerical and approximate analytical
methods for solving the system (1) — (4) is given in [20].

2. Mathematical Model

As opposed to the constructive flat heat exchangers for which the analysis of
hydrodynamics and heat exchange in 2-D format can be applied, for heat exchangers
having commensurate ratio of the width and height of the flow section, it is necessary to
solve the problem in a three-dimensional statement.

Suppose that a laminar flow of a heat carrier (a Newtonian incompressible medium)
having temperature t, with velocity ug is given to the input of a porous heat exchanger
having length [ with a constant cross section of height h; and width hy (Fig. 1). We assume

v4 q=0
Pl / a0
1 7 "
1
u, 1 //
o h, T
1 7
—> by o __] _
_» )
RNV

Fig. 1. 3-D analytical model of the heat exchanger
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that the body of the heat exchanger is impenetrable for the heat carrier, the lateral and
upper surfaces of the heat carrier are heat insulated, and the heat flow ¢ is given in the
lower surface. According to the considered analytical model, the equation (1) — (4) in the
dimensionless form is the following:

ou oV oW
o oy oz =" )
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where © = wyr/(edp), X = z/dy, Y = yldn, Z = z/dn, U = u/um,
V = v/ug, W = w/ug, u, v, w are components of the fluid velocity vector; d, =
2hiha/ (ha+ho), Ty = N (t; —to) [ (q0dn), Ts = X5 (ts —to) / (qodn), P = €°p/ (psup),
B = &% is the dimensionless Forchheimer parameter; Re = ppuody/ (upe?) is the

Reynolds number; Re, = pruod,/[6 (1 —¢) pif] is the local Reynolds number; Pr =
€ (pcp)f,uf/ (M py) is the Prandtl number; Nu, = a,zd, /A is the local Nusselt number;

Lu = [/\5/ (pcp)f} / [A:/ (pcy),] is the modified Lykov number; Da = K /d3 is the Darcy

number; A = A /A¢ . The system (5) — (10) provides the possibility first to analyze the
hydrodynamic subproblem and then the heat subproblem.

Laminar flow of the heat-carrier allows to accept the hypothesis that the flow in
a porous heat exchanger is unidirectional, i.e. (V =W =0). Let us take into account
the small value of the inertial effects under the decreasing pressure [21] and boundary
layer linearization [22], as well as the relation © = X /e. Therefore, the hydrodynamic
subproblem (5) — (8) is reduced to the initial-boundary value problem

ou 1dP 1 0?U  0*U U
=y + - , (11)
0X edX eRe \OY?2 027 e-Re -Da
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U0,X,7) =1, (12)
U(X,0,2)=U(X,Y,0)=U(X,H,,Z) =U (X,Y, Hy) =0, (13)

where Hy = (1+1) /2, Hy = (1 +n7') /2, n = hy/hy are such that dP/dX is determined
by the condition that the flow of fluid through the cross section of the porous heat

exchanger remains
Hy H,
1

Y, Z)dYdZ = 1. 14
Hl-Hz//WOO’ 7 )
0 0

Consider the heat subproblem for the stationary heat transfer regime in a porous heat
exchanger assuming that 0*T},/0X? < (0*Tys/0Y? & 0*Ty/0Z*) under keeping the
condition dj, < [ [3]

U = P ATS _T 1
0X Re-Pr<8Y2+8Z2 +Pr~Re§( ) (15)
T,  I*T, Re \ 2
ov2 Tz T (Re p) (AT = Ty) =0 (16)
with the boundary conditions
Ty (0,Y, Z) = 0, (17)
an S (X7 07 Z)
—7 s = ]
oy ’ (18)
0Ty (X, Hh, Z) _ 0Ty, (X,Y,0) _ OTyo (XY Hy) _ (19)
oY - o7 = 97 =0.

3. The Hydrodynamic Subproblem

The system (11) — (13) is linear. Therefore, in order to solve the system we can use the
Laplace one-side integral transformation [23] with respect to the variable X and the finite
integral sinus-transformation [24] with respect to the variables X and Z. As a result,

VY2 = e 53 ) = DM G

X [(1 + ai) exp (AmnX) — L] sin (A, Y) sin (u,2) ,

Amn

where N\, = ma/Hy, p, = nr/Hy, ap, = —(N\+pu2+ Da~') /(¢Re),
C=—etdP/dX.
The parameter C' is found from the condition (14)

" {_Hflzhr2 Do ) L= (=) [L - (—”n]Z/amn} B

m=1 n=1

which allows to determine the coefficient of hydraulic resistance according to Fanning [25]

£=2¢71C. (22)
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The length of the hydrodynamic initial section is calculated for the quasiregular regime
[22] (m = n = 1) by the relation

U(X,H/2,Hy/2)
U(oo, Hy/2,Hy/2)

1—

(the relative deviation 7 is usually taken to be 0,02), therefore

X - _ eRe In ¢ ‘ (23)

(&) + () +& |o- {(%)2+ () + ﬁ] (eRe)™

Calculations show that for large values of the number Da (rarefied skeleton) with
increase in the number Re the unevenness of the velocity field in a porous heat exchanger
is essentially inhomogeneous both in the hydrodynamic initial section and along the cross
section with a quasi-parabolic profile (Fig. 2).

Fig. 2. A dimensionless velocity field in the cross section z = 0,5 for Da = 0,1, n =0,1,
€ = 0,4 and different values of the numbers Re: a — 10; b — 100; ¢ — 1000

The decrease in the value of the numbers Da significantly reduces the length of the
hydrodynamic initial section, but the inhomogeneity of the velocity profile remains. Note
that only for sufficiently small values Da < 10~ there exists the homogeneous of the
velocity field, and along the entire flow U ~ 1 (hydrodynamic regime of ideal displacement
by heat carrier). The increase in the porosity of the skeleton under all other equal conditions
leads to an increase in the length of the hydrodynamic initial section. The transition of
the heat carrier flow to the flat case is observed for n < 0, 01.

The hydraulic coefficient of resistance £ decreases with an increase in number Re , which
agrees with the classical data. A sharp increase in the coefficient of resistance takes place in
the region of small values of the numbers Da, because the permeability of the skeleton of
the heat exchanger porous medium decreases. Calculations show that the passage section in
the form of a square is the most preferable from the point of view of the minimum pressure
loss when moving the heat carrier in a porous heat exchanger, because in this case the
wetted surface is minimal. Note that if there is no porous skeleton (¢ — 1,Da — 00), then
the resistance coefficient correlates with the value for a laminar flow of the Newtonian
fluid in a rectangular channel for different n [26].
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An analysis of the obtained relation for calculating the length of the initial segment
shows that the length is directly proportional to Re and for ¢ — 1, Da — oo coincides
with the data of [27].

4. Heat Subproblem

In practically important cases Da < 107° therefore the system (15) — (19) is
essentially simplified, because U ~ 1. As for the hydrodynamic subproblem, we obtain
a solution to the equations of the heat subproblem in the analytical form using the one-
sided integral Laplace transform of the variable X and a consistent application of the final
integral cosine transform with respect to the variables Y and Z, respectively:

1 20 — b
Ty (XY, Z X+2 — X)—-1 Y
(X,Y.2) = HlHQ{Re_Pr 23 G foxp (anX) — U cos (puY) +

—I—ZZ lexp (a, X) — 1] cos (¢, Z) + (24)

mlnl

X) — 1] cos (¢, Z) cos (me)} ,

where p,, = mn/Hy, m = 1,00, ¢, = nn/Hy, n =1, 00,

2
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C
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where
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Note that the porosity in the explicit form does not enter into the solution to the heat
subproblem (24), (25), but is contained in the defining dimensionless numbers. Therefore,
we represent the defining parameters as follows:

Re =Re’/e* Re, =Re,/[6(1 —¢)],Pr=cPr’/ (¢ + 0,3Pr’Re}),

i

Nu, = (2 4, 1Pr0”3Re§j;/5) / (¢ +0,3Pr°Re?) ,

where Re® = pyuody, /iy, Reg = pruody/ s

Calculation analysis of the heat subproblem in Fig. 3 shows that the small Reynolds
numbers equalize the temperature of the heat carrier and the porous skeleton due to
the greater heat conductivity of the porous matrix material. However, in this case the
efficiency of the heat transfer is very low, and the increase in the velocity of the heat
carrier sharply increases the efficiency. But at the same time, a significant inhomogeneity
of the temperature field takes place. And as expected, the temperature of the heat carrier
near the cooled surface is much higher, therefore the surface overheats. This situation can
cause a phase transition (boil of the cooler). An increase in the local Reynolds number,
that is an increase in the permeability with a constant velocity of the heat carrier at the
input of the heat exchanger, leads to a deterioration in the thermal indices.

In order to increase the cooling effect of the surface extracting heat and at the same
time reduce a heat load on the heat carrier, we can variate the Prandtl numbers such that
to increase the numbers.

Note that the parameter A characterizes the ratio of effective thermal conductivities
of the heat carrier and a material of the porous structure. A decrease in the parameter A
leads to an increase in the heat dissipation, and the increase in porosity worsens the entire
spectrum of thermal indices of the heat exchanger.

It is established that an increase in the ratio of the height to the width of the flow
section, with all other equal conditions, leads to a more intensive cooling of the surface
extracting heat (Fig. 4). In this case, there is an analogy with the functioning of the cooling
edge for the usual method to intensify the heat transfer, i.e. there exists an optimal ratio
of the height and width of flow section of the porous heat exchanger, which provides the
maximum heat dissipation from the cooled surface.
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Fig. 3. Dimensionless fields of heat carrier temperatures and matrix of a porous layer in
the plane z = 0,5 for ¢ = 0,2, Re)) = 100, Pr” = 0,002, A = 0,1, = 1 and for different
Re:a—10; b — 1000; ¢ — 10000

Therefore, we analyze the calculation of temperature fields of the heat carrier and the
matrix of the porous medium in the heat exchanger. The results of the analysis confirm
that the mathematical model is qualitative, adequate, correct and agrees with the modern
concepts of the heat exchange in the porous media. Estimation of the local Nusselt number
for a porous heat exchanger

Nu(X) = [Ty (X,0) — (T (X))] ", (26)

H, Ho

f fo (X,Y,2)dYdZ is

_ Hy
where T (X,0) = H%fT(X,O,Z)dZ, (Tf (X)) =
0

H H2

constructed by the following considerations. The averaging of the heat subproblem (15) —
(19) for U = 1 leads the subproblem to the differential-algebraic system:

d{Ty (X)) 1 Nu, Re

dX  Re-Pr Re?Pr

(AT (X)) = (T (X)),

N (e ) A G () = (35 (O] = 1, (35 0)) =

and the solution of the system is the following:

(T (X)) = g | + N

)] > o
(T, (X)) = {Nup(Re> +%{R6+Nu (e )]X}
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Fig. 4. Dimensionless fields of heat carrier temperatures and matrices of a porous layer in
the plane z = 0,5 for ¢ = 0,2, Re ° = 10000, Re ) = 100, Pr’ = 0,002, A = 0,1 and for
different n:a—-0,5;b—-2;¢ -5

Note that the axial change in temperatures of the heat carrier and matrix of the porous
medium is linear.

The result of the averaging of the heat subproblem only for the variable Z is analogous
to the flat case, the solution of which was obtained in [28|. In this solution suppose that
the height of the flat channel is equal to the hydraulic diameter of the cross section of the
porosity of the 3-D heat exchanger, then

— 2 > Cf f
Tj (X.0) = s [L = exp (o X)] +2 ’; i [1 — exp (bkx)} , (28)

where

f _ NupRe 1
a ~ RepPr \Re, L),

o 71’2]62 Nu, Re NU.2 ReS 21.2 R 2
b = Repr T ReZPr ~ RelPr A/ [W k*+Nu, (Reep> Al
2
f _ ([ 2NupyRe k2 21.2 Re

e = (RegPrA+ Ref’r)/ {W k% + Nuy, (E) A}'
The calculations of the local Nusselt number for a porous heat exchanger according
to the formula (26) with taking into account the ratio (27) and (28) prove (Fig. 5) that
together with the increase of the porosity its meaning decreases with simultenuous decrease

of the heat initial section because of the deceleration of the heat carrier in the matrix of
the skeleton.
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Fig. 5. The local Nusselt number for a porous heat exchanger for Re® = 10000; Reg = 100;
Pr® =0,002; A = 0,1, n = 1 and different values of porosity e:a — 0,2; b — 0,4

Conclusion

The presented mathematical model gives a wide range of different heat-hydraulic
characteristics of porous heat exchangers and can be considered as universal tool to develop

a new one and to choose the rational modes of functioning of the existing heat exchange
equipment.
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AHAJINTUYECKOE PEINTEHVNE 3AJTAYY KOHBEKTVBHOI'O
TEIIJIOITEPEHOCA B IIOPCTOM ITPAMOYT'OJIbBHOM KAHA/JIE
IMP11 TEPMNYECKNX I'PAHNYHBIX YCJIOBUAX BTOPOI'O POJA

B.U. Pasccxuz', T.A. Konosanos', A.B. Pasccrux', A.A. Bozep?,
C.B. JTaxun'

'Bopomeskckuit rocynapcTBeHHbIH TeXHNIeCKUH YHIBEPCHTET, T. BopoHesk
2Boennblit yueOHO-HAYIHBIH IEeHTP BOeHHO-BO3AYIIHEIX ciil <BoeHno-po3pynmmas
akagemus umenn npodeccopa H.E. 2Kykosckoro u FO.A. I'arapunas, 1. Boponex

B TpexmepHOiT mMOCTAaHOBKE PACCMOTPEHO ypaBHEHWE BpUHKMAHA COBMECTHO C YpaB-
HEHUEM TeTEPOTEHHOIO TEIJIONEPEHOCA s OJHOHAMPABIECHHOIO TEYEHUS HBIOTOHOBCKOM
KHUJKOCTH TPHU JIAMUHAPHOM DPEKHME Yepe3 TOPU30HTAIBHBIA MOPUCTHIN KAaHAJ [IOCTOSH-
HOI'O IPAMOYTOJIBHOI'O IIOIEPEYHOIO CeYEHUsi C U3BECTHBIMU TEPMHUYECKUMU [OTOKAMH HA
FpaHWIle U MaJibiMu 3HadeHusMu gucen lapcu. B cuny nwmuelinocTn copMyaupoBaHHOM
CUCTEMBI YPABHEHUN MOIEN TOJYIEHO ee AHAJUTUIECKOE PEIIeHNE C UCIOJIb30BAHUEM WH-
TerpabHbIX mpeobpaszosanuii Jlamraca u @ypre. Halinennoe perrernne mo3BOJIUIO OIEHATD
JUIAHY BXOJHOTO THAPOINHAMHIECKOTO YYaCTKa, KOIMUIIMEHT TUApaBINYeCKOr0 COMPO-
TUBJIEHUS U JIOKaJbHbIE dncia Hyccemnpra. Iloyaennbie pe3ysibrarsl fAJjis TUIPOIUNHAMUYE-
CKOM TIOI3a0a4H TIPY OOJIBINON TOPUCTOCTH M TETLIOBOM TOA3TaUN TP CTAITMOHAPHOM TTOJIE
TEMIIEPATYP COTJIACYIOTCS C KJIACCHIECKUM TAHHBIMU.

Karoueevie caosa: nopucmoie cpedvl; KOHBEKMUEHBT MENAOOOMEN; NPAMOY2OALHBLY
KaHa; KOIPPuuuenm 2udpasauieckozo conpomuBAEHUA; Ha4aibHbll 2Uu0POOUHAMUNECKUT
YUAcmox.
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