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Constant structure closed semantic systems are the systems each element of which
receives its de�nition through the correspondent unchangeable set of other elements
(neighbors) of the system. The de�nitions of the elements change iteratively and
simultaneously based on the neighbor portraits from the previous iteration. In this paper,
I study the behavior of such model systems, starting from the zero state, where all the
system's elements are equal. The development of constant-structure discrete time closed
semantic systems may be modelled as a discrete time coloring process on a connected graph.
Basically, I consider the iterative rede�nition process on the vertices only, assuming that
the edges are plain connectors, which do not have their own colors and do not participate
in the de�nition of the incident vertices. However, the iterative coloring process for both
vertices and edges may be converted to the vertices-only coloring case by the addition of
virtual vertices corresponding to the edges assuming the colors for the vertices and for the
edges are taken from the same palette and assigned in accordance with the same laws. I
prove that the iterative coloring (rede�nition) process in the described model will quickly
degenerate into a series of pairwise isomorphic states and discuss some directions of further
research.
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Introduction

A closed semantic system (CSS) may be thought as a system each element of which
is de�ned through other elements of this system. One of the most natural and important
CSSs is language. Every child at the age of 3�5 years is full of questions: "Why?", "What
for?", "How?" [1]. At that time, the child's world view is growing and getting as closed as
possible: every word claims to be explained in terms of other words.

One of the most simple CSSs is a discrete time system with a permanent structure:
1) the number of the elements that are involved in the de�nition of each element of such
system does not change with time; 2) all the elements are rede�ned simultaneously, basing
on the states of the neighbours taken at the previous simultaneous iteration. In this paper,
I study the behavior of such trivial systems, starting from the "zero" state, where all the
system's elements are equal. In contrast with the above mentioned growing CSS of small
kids, a CSS with a constant structure resembles an adult's world view, where the addition of
new notions and connections between them ceases as the personal world view approaches
the best known contemporary world view of the humanity. The simultaneous iterative
changes in discrete time is a reasonable assumption as far as we consider an arti�cial CSS
designed for a deterministic Turing machine equivalent [2]. However, the discreteness can
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hardly correspond to real-world examples, so it would be challenging to get rid of it in the
future.

The development of the described constant-structure discrete time CSS may be
modelled as a discrete time coloring process on a connected graph. From now and till
almost the end of the paper I will consider the iterative rede�nition process on the vertices
only, assuming that the edges are plain connectors, which do not have their own colors and
do not participate in the de�nition of the incident vertices. Initially, all the vertices have
the same "type", so at the �rst iteration the only di�erence between any 2 vertices is the
number of their neighbours (degree). For illustrative purposes, we may assign each degree
a speci�c "color". At the second iteration the "neighbour portrait" of each vertex becomes
more complicated (e.g., "5 neighbours" at the �rst iteration becomes "2 red and 3 green"
at the second). This iterative coloring process (see Fig. 1) produces equitable partitions [3]
(perfect colorings, regular partitions or graph divisors), which are well known [4�6] and
were successfully used in e.g. graph isomorphism heuristic Nauty [7] (the coloring process
in the latter is similar to the Algorithm of this paper).

Fig. 1. Two iterations of the coloring process

How will this iterative coloring process behave? Will the size of the palette ever increase
or it can decrease and then oscillate? Will the process become self-repeating? If yes, then
how fast and what will be the cycle size? The next section gives the answers to these
questions.

1. Mathematical Model

There are some little less common mathematical notations used below, which I would
rather state explicitly: a) the number of adjacent vertices for each v ∈ V in simple G
is equal to the degree of v and is referred to as deg(v); b) the image Y of the mapping
ϕ : X → Y is referred to as ϕ[X] and c) an arbitrary (possible multi-valued) mapping
between X and Y is referred to as X ⇒ Y .

Let G = (V,E) be a simple graph with vertices V and edges E. Each vertex possesses
a color, which changes iteratively depending on the colors of the vertex's neighbours. Let
Pali ⊂ N be the set (palette) of colors and Coli : V → Pali be the coloring function at the
i-th iteration. The iterative coloring process may be represented by Algorithm (see also
Fig. 2).

How will this IICP behave at in�nity? Below I prove that, starting from some iteration,
all the following colorings will be pairwise isomorphic in the sense of the following
de�nition.

De�nition 1. Two colorings Coli and Colj are isomorphic (Coli ∼ Colj), if there exists
a bijection ϕ : Pali ↔ Palj such that ∀v ∈ V ϕ(Coli(v)) = Colj(v).

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
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Algorithm. In�nite iterative vertices coloring process (IICP)
Pal0 = 0;
∀v ∈ V Col0(v) := 0;
∀v ∈ V Port0(v) := (k(v)), where k(v) = deg(v);
i := 1;
repeat
let χi be some indexing bijection χi : Porti−1[V ] ↔ 1, |Porti−1[V ]|, then the
current palette Pali := χi[Porti−1[V ]] (consists of the indices of the elements
of Porti−1[V ]);
let Ki := |Pali|;
build a new "neighbourhood portrait" of each vertex:

Porti(v) :=
(
ki1(v), . . . , k

i
j(v), . . . , k

i
Ki
(v)

)
,

where kij(v) is the number of adjacent vertices of v ∈ V that possess the color
j ∈ Pali;
i := i+ 1;

until False.

Fig. 2. Scheme of in�nite iterative coloring

Lemma 1 makes the �rst step in this direction. It shows that two consequent isomorphic
colorings result in the degeneration of the following IICP.

Lemma 1. If ColL−1 ∼ ColL for some L, then all the following colorings will be pairwise
isomorphic: ∀L′ ≥ L ∀L′′ ≥ L ColL′ ∼ ColL′′.

Proof. It is enough to prove that ColL ∼ ColL+1. Let us select an arbitrary v ∈ V and
take the portrait of v from the previous iteration, which corresponds to ColL+1(v):(

kL1 (v), . . . , k
L
KL

(v)
)
= χ−1

L+1(ColL+1(v)). (1)

Let us consider the mapping ψ : PortL−1[V ] → PortL[V ]:

ψ
((
kL−1
1 (v), . . . , kL−1

KL−1
(v)

))
=

(
kL1 (v), . . . , k

L
KL

(v)
)

(2)

and prove that it is a bijection.
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1) ψ is de�ned for all elements of PortL−1, since it is de�ned for all v ∈ V .
2) Each portrait p from PortL corresponds to at least one vertex v′ ∈ V at the L-th

iteration; selecting this v′ in (2), we get at least one preimage for p in PortL−1, which
means that ψ is surjective.

3) The single-valuedness of ψ is slightly more complicated to prove; suppose there is
a portrait from PortL−1

p =
(
kL−1
1 (v1), . . . , k

L−1
KL−1

(v1)
)
=

(
kL−1
1 (v2), . . . , k

L−1
KL−1

(v2)
)

(3)

that is mapped by ψ into two portraits from PortL

p1 =
(
kL1 (v1), . . . , k

L
KL

(v1)
)
and p2 =

(
kL1 (v2), . . . , k

L
KL

(v2)
)
.

Since ColL−1 ∼ ColL, there exists an isomorphism φ : PalL−1 ↔ PalL such that

∀v ∈ V ∀i ∈ 1, KL kL−1
i (v) = kLφ(i)(v). (4)

Considering this, we can write

∀i ∈ 1, KL kLi (v1)
(4)
= kL−1

φ−1(i)(v1)
(3)
= kL−1

φ−1(i)(v2)
(4)
= kLφ(i)(v2),

which means that p1 and p2 are equal elementwise and proves the single-valuedness of ψ.
4) The injectiveness of ψ may be proved in the same manner; suppose there are two

portraits from PortL−1

p1 =
(
kL−1
1 (v1), . . . , k

L−1
KL−1

(v1)
)
and p2 =

(
kL−1
1 (v2), . . . , k

L−1
KL−1

(v2)
)

that are mapped by ψ into one portrait from PortL(
kL1 (v1), . . . , k

L
KL

(v1)
)
=

(
kL1 (v2), . . . , k

L
KL

(v2)
)
. (5)

Returning to (4), we have

∀i ∈ 1, KL kL−1
i (v1)

(4)
= kLφ(i)(v1)

(5)
= kLφ(i)(v2)

(4)
= kL−1

i (v2),

which proves that ψ is injective and therefore is a bijection.
Applying ψ−1 to the right-hand side of (1), we get an element of PortL−1, which can

be mapped further to a color from PalL by χL. The �nal sought-after mapping ϕ : PalL ↔
PalL+1 is the composition of the three above-mentioned mappings,

ϕ = χL+1 ◦ ψ ◦ χ−1
L ,

which is a bijection since all the composing mappings are bijections.

2
At this point, we know that two consequent isomorphic colorings make the further

coloring process degenerated, but is this situation impossible, probable or inevitable? The
answer to this question starts with the analysis of the behavior of the palette size. The
number of colors in the palettes evidently belongs to 1, |V |, and intuitively this number
either increases or remains constant during the IICP.

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
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Lemma 2. The size of the palette never decreases: ∀i ∈ N ∀v1, v2 ∈ V (Coli+1(v1) =
Coli+1(v2)) ⇒ (Coli(v1) = Coli(v2)).

Proof. Let us use induction on i. The base case for i = 0 is true since all the vertices have
the same color at the �rst iteration: ∀v ∈ V Col0(v) = 0.

Inductive step: assume the statement is true for all i < L and prove it for i = L. Let
V1 = {v11, . . . , vn1 } be the adjacent vertices of v1 and V2 = {v12, . . . , vm2 } be the adjacent
vertices of v2 in G.

Since Coli+1(v1) = Coli+1(v2) and χL+1 is a bijection,

PortL(v1) = χ−1
L+1(Coli+1(v1)) = χ−1

L+1(ColL+1(v2)) = PortL(v2),

which means that n = m and there exists a bijection ψ : V1 ↔ V2, such that

∀j ∈ 1, n ColL(ψ(v
j
1)) = ColL(v

j
1).

By induction,

∀j ∈ 1, n (ColL(ψ(v
j
1)) = ColL(v

j
1)) ⇒ (ColL−1(ψ(v

j
1)) = ColL−1(v

j
1)),

which means that PortL−1(v1) = PortL−1(v2) and thus

ColL(v1) = χL(PortL−1(v1)) = χL(PortL−1(v2)) = ColL(v2).

2
Now we know that at each iteration the number of colors either increases or remains

constant. We also know that the palette size cannot be arbitrary large, it is limited by |V |.
Putting together both results, we get that an IICP may contain only a �nite number of
the steps where the palette size grows. In not more than |V | iterations, an IICP will come
to the situation, where the palettes at two consequent iterations have the same size. The
consequences will be radical.

Lemma 3. Either the size of the palette increases or the two last colorings are isomorphic:
(Ki = Ki+1) ⇒ (Coli ∼ Coli+1).

Proof. I will prove that if Ki = Ki+1, then the mapping ϕ : Pali ⇒ Pali+1, de�ned as
ϕ(Coli(v)) = Coli+1(v) ∀v ∈ V , is a bijection. Let's argue by contradiction: suppose
Ki = Ki+1, but ϕ is not a bijection. Since ϕ is de�ned for all v ∈ V , it is completely
de�ned on Pali and is a surjection onto Pali+1; it is also injective by Lemma 2. The last
option for ϕ not to be a bijection is multi-valuedness. Suppose that

∃v′, v′′ ∈ V : (v′ ̸= v′′) & (Coli(v
′) = Coli(v

′′)) & (Coli+1(v
′) ̸= Coli+1(v

′′)). (6)

Let V1 = {v ∈ V : Coli(v) = Coli(v
′)} and V2 = V \ V1 (see Fig. 3). The set V2 is not

empty, since otherwise

|Coli[V1]|+ |Coli[V2]| = 1 + 0 = Ki = Ki+1

(6)

≥ 2.

There are no colors from Coli+1[V1] among the colors from Coli+1[V2] since otherwise
(see Fig. 3) ∃v∗1 ∈ V1, v

∗
2 ∈ V2 : Coli+1(v

∗
1) = Coli+1(v

∗
2) but, by construction of V1, V2,

Coli(v
∗
1) = Coli(v

′) ̸= Coli(v
∗
2), which contradicts the injectiveness of ϕ. Thus,

Coli+1[V1] ∩ Coli+1[V2] = ∅ and Ki+1 = |Coli+1[V1]|+ |Coli+1[V2]|.
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The number of distinct colors in Coli+1[V2] is not less than |Coli[V2]| = Ki − 1 since ϕ
is injective and does not map distinct colors into the same one.

By the de�nition of V1 and assumption (6), we have v′, v′′ ∈ V1 and

|Coli+1[V1]| ≥ |{Coli+1(v
′), Coli+1(v

′′)}| = 2,

which means that

Ki+1 = |Coli+1[V1]|+ |Coli+1[V2]| ≥ 2 + (Ki − 1) = Ki + 1

and contradicts the assumption Ki = Ki+1.

2

Fig. 3. Illustration for Lemma 3

The results of the previous lemmas may be summed up as a theorem.

Theorem 1. The coloring process described in the Algorithm converges to an unchanging
equitable partition in at most |V | iterations.

Edge coloring. Until now, all objects in the CSS were de�ned through other objects
by means of one-type connections. One of the important generalizations of such approach
is the introduction of connections of di�erent types. As far as we talk about closed semantic
systems, the "type" of a connection should be de�ned within the system. By analogy to
the objects de�ned through their neighbours, the connections could be de�ned through the
objects, which they relate. In the considered graph model of CSS, it means that the edges,
just as the vertices, are subjected to an iteration coloring process based on the portraits of
neighbours. During such an expanded coloring process, the color of a vertex is de�ned by
the colors of the adjacent vertices and incident edges, and the color of an edge is de�ned
by the colors of its 2 incident vertices.

This iterative coloring process for vertices and edges may be converted to the vertices-
only coloring case by the addition of "virtual" vertices corresponding to the edges (Fig. 4)
assuming the colors for the vertices and for the edges are taken from the same palette and
assigned in accordance with the same laws.

2. Discussion

In the present paper I showed that each CSS with a constant structure and discrete
time ceases to change rather quickly. The future research could aim at getting the
CSS model closer to the real world. The consideration of more complex unsynchronized
dynamical structures will change, to all appearances, the further research methods from

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
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Fig. 4. Transformation of graph to consider the in�uence of edges

pure mathematical to statistical and computational. Below I concern several conceivable
directions for the further investigations:

1. The �rst step towards real complex systems is to get rid of the discreteness of time. In
the majority of real complex systems it seems unnatural to change the states of all elements
simultaneously. Such desynchronization will mix the palettes, so the corresponding formal
coloring process should be considerably di�erent.

2. The second step is the consideration of the systems that start from an arbitrary
state, not only the "zero state" of Algorithm, where ∀v ∈ V Col0(v) = 0. It is easy to see
that in this case Lemma 2 is not always true (see Fig. 5), therefore, Lemma 3 would also
need a di�erent proof since the current one relies on Lemma 2. Nevertheless, it seems the
proof of convergence can be generalized to the case of arbitrary initial states.

Fig. 5. Example of the palette's growth starting from a non-zero initial state

3. The most interesting research direction is the analysis of behavior of the CSSs with
(stochastically) varying sets of objects and connections. Such CSSs could presumably be
addressed by means of applied statistics and multi-agent modelling. In this respect, the
underlying graph model could be replaced with the model of horizontal gene transfer [8]
where each agent is "de�ned" through the in�uence of the agents encountered during
stochastic motion.
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ÈÒÅÐÀÖÈÎÍÍÎÅ ÐÀÂÍÎÌÅÐÍÎÅ ÐÀÇÁÈÅÍÈÅ ÃÐÀÔÀ
ÊÀÊ ÌÎÄÅËÜ ÄÈÑÊÐÅÒÍÎÉ ÇÀÌÊÍÓÒÎÉ ÑÅÌÀÍÒÈ×ÅÑÊÎÉ
ÑÈÑÒÅÌÛ Ñ ÏÎÑÒÎßÍÍÎÉ ÑÒÐÓÊÒÓÐÎÉ

Å.Å. Èâàíêî

Èíñòèòóò ìàòåìàòèêè è ìåõàíèêè ÓðÎ ÐÀÍ, ã. Åêàòåðèíáóðã,
Ðîññèéñêàÿ Ôåäåðàöèÿ
Ìåõàíèêî-ìàøèíîñòðîèòåëüíûé èíñòèòóò, Óðàëüñêèé ôåäåðàëüíûé óíèâåðñèòåò,
ã. Åêàòåðèíáóðã, Ðîññèéñêàÿ Ôåäåðàöèÿ

Çàìêíóòûå ñåìàíòè÷åñêèå ñèñòåìû ñ ïîñòîÿííîé ñòðóêòóðîé ýòî ñèñòåìû, â êîòî-
ðûõ êàæäûé ýëåìåíò îïðåäåëÿåòñÿ ñ ïîìîùüþ ñîîòâåòñòâóþùåãî åìó ôèêñèðîâàííîãî
ìíîæåñòâà äðóãèõ ýëåìåíòîâ ñèñòåìû. Îïðåäåëåíèÿ ýëåìåíòîâ èçìåíÿþòñÿ èòåðàòèâíî
è îäíîâðåìåííî íà îñíîâå ≪ïîðòðåòîâ ñîñåäåé≫, ïîëó÷åííûõ íà ïðåäûäóùåé èòåðàöèè.
Â íàñòîÿùåé ñòàòüå àâòîð ðàññìàòðèâàåò ïîâåäåíèå ïîäîáíûõ ìîäåëüíûõ ñèñòåì, â êî-
òîðûõ ïðîöåññ ðàñêðàñêè íà÷èíàåòñÿ ñ íóëåâîãî ñîñòîÿíèÿ, ãäå âñå ýëåìåíòû èäåíòè÷-
íû. Èçìåíåíèå çàìêíóòûõ ñåìàíòè÷åñêèõ ñèñòåì ñ ïîñòîÿííîé ñòðóêòóðîé è äèñêðåò-
íûì âðåìåíåì ìîæåò ìîäåëèðîâàòüñÿ êàê äèñêðåòíûé ïðîöåññ ðàñêðàñêè íà ñâÿçíîì
ãðàôå. Â îñíîâíîì â ñòàòüå ðàññìàòðèâàåòñÿ èòåðàöèîííûé ïðîöåññ ïåðåîïðåäåëåíèé
òîëüêî íà âåðøèíàõ, â ïðåäïîëîæåíèè, ÷òî ðåáðà ÿâëÿþòñÿ íå áîëåå, ÷åì ñâÿçÿìè,
íå îáëàäàþùèìè ñîáñòâåííûìè öâåòàìè è íå ó÷àñòâóþùèìè â ïðîöåññå ðàñêðàñêè.
Ìåæäó òåì, èòåðàöèîííûé ïðîöåññ îäíîâðåìåííîé ðàñêðàñêè âåðøèí è ðåáåð ìîæåò
áûòü ñâåäåí ê ïðîöåññó ðàñêðàñêè òîëüêî âåðøèí ñ ïîìîùüþ äîáàâëåíèÿ âèðòóàëüíûõ
âåðøèí, ñîîòâåòñòâóþùèõ ðåáðàì ïðè óñëîâèè, ÷òî öâåòà äëÿ ðåàëüíûõ è âèðòóàëü-
íûõ âåðøèí (ðåáåð) âûáèðàþòñÿ èç îäíîãî ìíîæåñòâà ïî îäíèì ïðàâèëàì. Â ñòàòüå
äîêàçûâàåòñÿ, ÷òî ïîäîáíûé èòåðàòèâíûé ïðîöåññ ïåðåîïðåäåëåíèé íà îñíîâå öâåòîâ
ñîñåäåé áûñòðî âûðîæäàåòñÿ â ïîñëåäîâàòåëüíîñòü ïîïàðíî èçîìîðôíûõ ñîñòîÿíèé, à
òàêæå îáñóæäàþòñÿ âîçìîæíûå íàïðàâëåíèÿ äàëüíåéøèõ èññëåäîâàíèé.

Êëþ÷åâûå ñëîâà: çàìêíóòàÿ ñåìàíòè÷åñêàÿ ñèñòåìà; ãðàô; èçîìîðôèçì.
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