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Case of two teams competition, which should overcome the distance divided onto stages,

is considered. In the case under consideration, every stage has its own number of routes,

which the participants of the team may select to overcome. It is shown, that competition

bears the character of the relay race, and two-parallel semi-Markov process is the natural

approach to modelling of the situation.

From all possible routes two were selected. The conception of switching space, which

display all possible switching trajectories is proposed. The formula for calculation of

switching trajectories number is acquired. It is shown, that ordinary semi-Markov process

with the use of the recursive procedure may be obtained from the complex two-parallel

semi-Markov process, which describes the wandering through selected routes. The formulae

for realization of the recursion are proposed.

Conception of distributed forfeit is proposed. It is shown, that forfeit depends on

di�erence of stages, teams overcome at current time, and routes, on which participants

solved to overcome stage. The formula for estimation of total forfeit, which one team pays

to other team is obtained. It is shown, that the sum of forfeit may be used as the optimization

criterion in the game strategy optimization task.

Keywords: relay race; two-parallel semi-Markov process; distance; stage; route;

distributed forfeit; recursive procedure.

Introduction

The paired relay race is the basic principle of any concurrency unfolding in physical
time in manifold �elds of a human activity, such as economics, politics, defense, sport, etc.
[1�4]. Classic relay races presume that a distance, teams should overcome, is divided onto
stages [5], and stages with the same numbers are equal to both teams of the participants.
If the distance overcoming e�ciency depends on the winning or losing the stages, than
there is only one way to win the race as a whole: to win all the stages of the distance. This
solution is acceptable for a team, which has necessary resources to maintain a selected
high speed on the stage, but if it has not, team tries to �nd asymmetric response, which
supposes reaching the �nal point of the distance along the alternative route, which the
participants can select. In this case there is a number of parameters, the teams can vary
and control, namely, division the distance on the stages, time characteristics of overcoming
stages, routes of the stages.

For an external observer selection of routes by the participants of the team is made
randomly, so model of running the distance on selected routes should be the stochastic
one [6, 7]. The availability of alternative generates premises for the emergence of game
situations. Those teams which can evaluate the bene�ts and losses from choice of this or
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that distance route, may construct the optimal strategy of relay races games for winning
the competition as a whole.

Approaches for forecasting of bene�ts and losses of relay-races games are currently
known insu�ciently, that explains necessity and relevance of the investigations in this
domain.

1. The Structure and the Model of Paired Alternative Route

Relay-Race

Distance, stages and routes are shown in Fig. 1, which explain the following
assumptions [5]:

1) relay race includes two teams of participants, A and B;
2) teams act independently of each other and should overcome the distance in a real

physical time;
3) the distance is divided into J stages;
4) j -th stage of A team includes K (A, j ) routs, j -th stage of B team includes K (B, j )

routes K (A, j ) ̸= K (B, j );
5) after �nishing j -th stage the participant of team A may choose one of K (A, j+1)

possible routes of the (j+1)-th stage, after �nishing j -th stage the participant of team B
may choose one of K (B, j+1) possible routes of the (j+1)-th stage;

6) both teams, A and B, start the distance at once;
7) the time of passing of k(A, j )-th route, 1(A, j ) ≤ k(A, j ) ≤ K (A, j ) by the

participant of team A is a random one, and is de�ned with accuracy to density;
8) the time of passing of k(B, j )-th route, 1(B, j ) ≤ k(B, j ) ≤ K (B, j ) by the

participant of team A is a random one, and is de�ned with accuracy to density;
9) after completion of j -th stage by previous participant next participant starts (j+1)-

th stage without a lag;
10) winning or losing of the competition stage is understood as completion of the stage

the �rst or not the �rst;
11) winner's forfeit is distributed in time and depends on the di�erence of stages and

routes, which a winner and loser pass.
In addition to assumptions:
1) nodes

{
Aa0, ...,

Aaj, ...,
AaJ

}
of graph "Team A" mean relay points of distance,

which should overcome team A;
2) nodes

{
Ba0, ...,

Baj, ...,
BaJ

}
of graph "Team B" mean relay points of distance,

which should overcome team B ;
3) nodes Aa0 and

Ba0 are the starting points of the distance;
4) nodes AaJ and BaJ are the end points of the distance.
The model of the paired alternative route relay-race may be performed as two-parallel

semi-Markov process [7�9]

h (t) =

[
Ah (t) 0
0 Bh (t)

]
, (1)

where t is the time, Ah (t), Bh (t) are semi-Markov matrices [8, 10, 11] of size J × J , 0 is
the zero matrix of size J × J and

Ah (t) =
[
hm(A),n(A) (t)

]
, Bh (t) =

[
hm(B),n(B) (t)

]
. (2)
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Fig. 1. Relay-races with alternative routes

In its turn semi-Markov matrices (2) are as follows

Ah (t) =
[
Ahj,l (t)

]
, Bh (t) =

[
Bhj,l (t)

]
, (3)

where Ahj,l (t),
Bhj,l (t) are elements of matrices (3), correspondingly, disposed on the
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intersection of j -th row and l -th column

Ahj,l (t) =

{
Ahj (t) , when l = j + 1,
0, otherwise,

Bhj,l (t) =

{
Bhj (t) , when l = j + 1,
0, otherwise,

(4)

Ahj (t) =
[
h1(A,j) (t) , ..., hk(A,j) (t) , ..., hK(A,j) (t)

]
, 1 ≤ j ≤ J,

Bhj (t) =
[
h1(B,j) (t) , ..., hk(B,j) (t) , ..., hK(B,j) (t)

]
, 1 ≤ j ≤ J,

(5)

hk(A,j) (t) = pk(A,j) (t) fk(A,j) (t) ,

hk(B,j) (t) = pk(B,j) (t) fk(B,j) (t) ,
(6)

pk(A,j) =

∞∫
0

hk(A,j) (t) dt; pk(B,j) =

∞∫
0

hk(B,j) (t) dt, (7)

where pk(A,j) is the probability of choice of k (A, j)-th route by j -th participant of team
A, pk(B,j) is the probability of choice of k (B, j)-th route by j -th participant of team B,
fk(A,j) (t) is the time density of overcoming k (A, j)-th route by j -th participant of team A,
fk(B,j) (t) is the time density of overcoming k (B, j)-th route by j -th participant of team B,
hk(A,j) (t) is the weighted time density of overcoming k (A, j)-th route by j -th participant
of team A, hk(B,j) (t) is the weighted time density of overcoming k (B, j)-th route by j -th
participant of team B.

For Ahj (t),
Bhj (t)

K(A,j)∑
l(A,j)=1

pk(A,j),l(A,j) = 1,

K(B,j)∑
l(B,j)=1

pk(B,j),l(B,j) = 1. (8)

Let us select from all possible routes of wandering through the semi-Markov processes
Ah (t) and Bh (t) routes as follows

sl(A) = [k (A, 1) , ..., k (A, j) , ..., k (A, J)] ,

sl(B) = [k (B, 1) , ..., k (B, j) , ..., k (B, J)] . (9)

The common number of selected routes is equal to

K (A) =
J∏

j=1

K (A, j) , K (B) =
J∏

j=1

K (B, j) . (10)

The weighted time density of wandering from starting points of the distance Aa0,
Ba0

till end points of the distance AaJ
BaJ through the selected route is as follows [10�13]

hk(A) (t) = L−1
[∏J

j=1 L
[
hk(A,j) (t)

]]
,

hk(B) (t) = L−1
[∏J

j=1 L
[
hk(B,j) (t)

]]
,

(11)

where L [...] and L−1 [...] are direct and inverse Laplace transforms, correspondingly.
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The probability of remaining the process on routes (9) may be estimated as follows:

pk(A) =

∞∫
0

hk(A) (t) dt =
J∏

j=1

pk(A,j), pk(B) =

∞∫
0

hk(B) (t) dt =
J∏

j=1

pk(B,j). (12)

The pure time density of wandering from states Aa0,
Ba0 till states

AaJ ,
BaJ through

the selected route is as follows [14, 15]

fk(A) (t) =
hk(A) (t)

pk(A)

, fk(B) (t) =
hk(B) (t)

pk(B)

. (13)

The time density of wandering from the state ma0 till the state
maJ on any possible

arbitrary route (13) is as follows

AfΣ (t) =

K(A)∑
k(A)=1

hk(A) (t) ,
BfΣ (t) =

K(B)∑
k(B)=1

hk(B) (t) . (14)

2. Competition in Relay-Races

Let us extract from all possible wandering routes of semi-Markov processes Ah (t) and
Bh (t) routes (9), and numerate stages, in which participants situated at current time, as
it is shown on the Fig. 1. Then the second Cartesian degree of the set {1, ..., j, ..., J + 1}
gives S space of stages, in which teams A and B are situated in the current time during
relay-race (Fig. 2). The race begins from state (1, 1) and ends at state (J+1, J+1).
Common number of states in the space S is equal to (J + 1)2. Initial meaning of the
vector is [1, 1]. Wandering through the space has the character of evolution, in which after
every switch one of the elements of vector increments by unit. At any switch incremental
element is the only one. Switches continue till the vector reaches the state [J+1, J+1]
(teams are out of race). The common number of switches during evolution is as 2J.

The common quantity of switch trajectories grows fast in dependence of number of
stages (R. Bellman's "curse of dimensionality" [16]). To de�ne common quantity of switch
trajectories let us �nd the (2J)-th Cartesian degree of the set {A,B} and gather all
vectors, which include J A-s and J B -s into one set. Cardinality of this set is equal to J
-th binomial coe�cient, i.e.

QJ
2J =

(2J)!

(J !)2
. (15)

During evolution route realizations j (A) and j (B) compete between them [5, 9]. In
common case, when two participants compete which start simultaneously and run their
stages during the time, de�nable with densities θA (t) and θB (t), then time of completion
the stage the �rst is as follows

θw (t) = θA (t) [1−ΘB (t)] + θB (t) [1−ΘA (t)] = θwA (t) + θwB (t) , (16)

where θwA (t) is the weighted density of the time of winning the stage by participant A,
θwB (t) is the weighted density of time of winning the stage by participant A, Θ... (t) =
t∫
0

θ... (τ) dτ is a distribution function.
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Fig. 2. Space S of states (a) and the tree of switches (b)

The probabilities of the winning participants A and B, and pure time densities of such
events are as follows

πwA =

∞∫
0

θwA (t) dt, πwB =

∞∫
0

θwB (t) dt,

φwA =
θwA (t)

πwA

, φwB =
θwB (t)

πwB

. (17)

The second formula, necessary for relay-races simulation, is the dependence for the
waiting time density. If in the competition wins the participant B, he waits until the
participant completes his stage. The formula for density of waiting time is as follows [3, 5]

θB→A (t) =

η (t)
∞∫
0

θB (ξ) θA (t+ ξ) dξ

∞∫
0

ΘB (t) dΘA (t)

, (18)

where η (t) is the Heaviside function, ξ is additional argument having the dimension of

time, ΘA,B (t) =
t∫
0

θA,B (ξ) dξ.

With the use of dependences (16) � (18) may be formed recursive procedure of
relay-race evolution analysis. The recursive character of the evolution follows from the
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competitive character of choice of the next switch direction in space S. For building up
the recursive procedure let us introduce auxiliary time density rgj(A) (t),

rgj(A) (t), where r
is the common number of switching during evolution, j is the stage under consideration.
Example of evolution is shown in Table.

Table

Evolution m-th and n-th swarms

r j (A), J (B) Densities
0 1, 1 fk(A,1), fk(B,1),

0g1(A),
0g1(B)

1 1, 2 0g1(B)→1(A), fk(B,2),
1g1(A),

1g2(B)

2 2, 2 fk(A,2) ,
1g1(A)→2(B)

...
r j (A), j (B) ..., rgj(A),

rgj(B)

r+1 j (A)+1, j (B) fk(A,j+1),
r+1gj(A)→j(B),

r+1gj(A)+1,
r+1gj(B)

...
R-2 J (A), J (B) ..., R−2gJ (A),

R−2gJ (B)

R-1 J (A), J (B)+1 R−2gJ (B)→J (A),
R−1gJ (A)

R J (A)+1, J (B)+1 Relay-race is over

On the �rst phase of recursion (no switches are made) original time densities
fk(A,1), fk(B,1) compete with each of them. To formalize the competition description next
substitution should be done

0g1(A) := fk(A,1),
0g1(B) := fk(B,1). (19)

After winning the competition the participant from team B, as it is shown in the table,
when r = 1, time densities, which participates in the next phase are de�ned as follows

1g1(A) :=
0g1(B) (t) → 0g1(A) (t) =

0g1(B)→1(A),

1g0(B) := fk(B,2), (20)

where 0g1(B) (t) → 0g1(A) (t) is the operation, de�ned as (18).
The probability of winning from the team B participant is de�ned with formulae (17),

which for the case under consideration is as follows

πw1(B) =

∞∫
0

0g1(B) (t)
[
1− 0G1(A) (t)

]
dt. (21)

After winning in the second switch the participant from team A, as it is shown in
the table, when r = 2, time densities, which participates in the next phase are de�ned as
follows 2g2(A) := fk(A,2) ,

2g2(B) :=
1g1(A)→2(B), etc.

Let us after r switches in competition participate densities rgj(A) and
rgj(B). If in this

phase team A wins participant, then r+1gj(A)+1 := fk(A,j+1)
r+2gj(B) :=

rgj(A)→ j(B),

πwj(A) =

∞∫
0

rgj(A) (t)
[
1− rGj(B) (t)

]
dt, etc. (22)
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In the (R-2)-th phase, when in competition of R−2gJ (A) and
R−2gJ (B)wi team B, wins

participant with probability

πwj(B) =

∞∫
0

R−2gJ(B) (t)
[
1− R−2GJ(A) (t)

]
dt, (23)

team A participant stays at the distance alone, and ends J -th stage at the time
R−2gJ (B)→J (A).

3. Evaluation of E�ectiveness of Alternative Relay-Race Strategy

It is quite natural that for the evaluation of e�ectiveness one would use the model, in
which team, which gets the stage with a higher number, acquires from the team, who gets
the stage with a lower number, the forfeit, and forfeit is de�ned as distributed payment
ck(A,j),k(B,i) (t), the value of which depends on the time, the di�erence of stages and selected
routes. The analysis of the evolution shows that the situation, which changes the conditions
of forfeit payments emerges from the winning of one of the participant (previous switch)
and lasts till the next switch. If after r switches densities rgi(A)(t) and

rgi(B)(t) compete
with each other, then the common sum of the forfeit at the stage is as follows [3, 5]

rCk(A,j),k(B,i)

(
qJ2J

)
=

=



∞∫
0

rgj(A) (t)
[
1− rGj(B) (t)

]
ck(A,j),k(B,i) (t) dt

∞∫
0

rgj(A) (t)
[
1− rGj(B) (t)

]
dt

, when team Awins,

∞∫
0

rgj(B) (t)
[
1− rGi(A) (t)

]
ck(B,i),k(A,j) (t) dt

∞∫
0

rgj(B) (t)
[
1− rGi(A) (t)

]
dt

, when team B wins,

(24)

where qJ2J is the number of switching trajectory realization (common quantity of
realizations QJ

2J is de�ned with (15)).
The cost of the pair competition at the qJ2J -th switching trajectory is as follows

Ck(A,j),k(B,i)

(
qJ2J

)
=

2J∑
r=1

rCk(A,j),k(B,i)

(
qJ2J

)
. (25)

The probability of emergence of q-th trajectory is as follows

πk(A,j),k(B.i) (q) =
2J∏
r=1

πw (r) , (26)

where πw (r) is the probability of the proper direction choice at the switching trajectory,
as it is shown in formulae (21) � (23).

The common cost of the paired teams A and B relay-race at the pre-determined,
k(A)-th and k(B)-th routes is as follows

Ck(A),k(B) =

QJ
2J∑

qJ2J=1

πk(A,j),k(B.i)

(
qJ2J

)
Ck(mAj),k(B.i)

(
qJ2J

)
. (27)
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With the use (16) common cost of competition at the mentioned route pair is as follows

CA,B =

K(B)∑
k(B)=1

K(A)∑
k(A)=1

pk(A)pk(B)Ck(A),k(B). (28)

Formula (28) may be used as a criterion of optimization of the behaviour of teams
in relay race games. In this case the selection of possible routs, probabilities and time
characteristics of the stage overcoming are alternative parameters. The methods of
optimization task solving may be adopted from the game theory.

Conclusion

Working out the approach of modelling relay races with selectable routes opens a new
page in the game theory because the competition develops in real physical time, and model
of relay race practically reproduces real life situations. Moreover, at every stage, as in real
life, there is a race between the participants of di�erent teams, in which any participant can
win or lose by time, that ampli�es competitive moments of the game under consideration.

The further investigation in this area should be directed to �nding more tight links with
the classical game theory and use typical optimal strategies in the dynamic competitive
condition [17, 18]. Also it is possible to work out radically new strategies, oriented only
on the use of the model of paired alternative route relay-races.
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Ðàññìàòðèâàåòñÿ ìàòåìàòè÷åñêàÿ ìîäåëü, ïðåäñòàâëÿþùàÿ ñîáîé ôîðìàëèçàöèþ

êîíêóðåíöèè äâóõ êîìàíä, êîòîðûå äîëæíû ïðåîäîëåâàòü äèñòàíöèþ, ñîñòîÿùóþ èç

ýòàïîâ. Â ðàññìàòðèâàåìîì ñëó÷àå íà êàæäîì ýòàïå åñòü ðàçëè÷íîå êîëè÷åñòâî ìàðø-

ðóòîâ, êîòîðûå ó÷àñòíèêè êîìàíäû ìîãóò âûáðàòü äëÿ ïðîõîæäåíèÿ. Ïîêàçàíî, ÷òî

êîíêóðåíöèÿ íîñèò õàðàêòåð ýñòàôåòû, à äâóõïàðàëëåëüíûé ïîëóìàðêîâñêèé ïðî-

öåññ � åñòåñòâåííûé ïîäõîä ê ìîäåëèðîâàíèþ ñèòóàöèè.
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ÌÀÒÅÌÀÒÈ×ÅÑÊÎÅ ÌÎÄÅËÈÐÎÂÀÍÈÅ

Ïîëó÷åíà ôîðìóëà äëÿ ðàñ÷åòà ÷èñëà êîììóòàöèîííûõ òðàåêòîðèé. Ïîêàçàíî,

÷òî èç ñëîæíîãî äâóõïàðàëëåëüíîãî ïîëóìàðêîâñêîãî ïðîöåññà, îïèñûâàþùåãî áëóæ-

äàíèå ïî âûáðàííûì ìàðøðóòàì, ìîæíî ïîëó÷èòü îáû÷íûé ïîëóìàðêîâñêèé ïðîöåññ

ñ èñïîëüçîâàíèåì ðåêóðñèâíîé ïðîöåäóðû. Ïðåäëîæåíû ôîðìóëû äëÿ ðåàëèçàöèè ðå-

êóðñèè.

Ïðåäëîæåíà êîíöåïöèÿ ðàñïðåäåëåííîé íåóñòîéêè. Ïîêàçàíî, ÷òî íåóñòîéêà çà-

âèñèò îò ðàçíîñòè ýòàïîâ, êîìàíäû ïðåîäîëåâàþò â òåêóùåå âðåìÿ è ìàðøðóòû, ïî

êîòîðûì ó÷àñòíèêè ðåøàëè ïðåîäîëåòü ýòàï. Ïîëó÷åíà ôîðìóëà îöåíêè îáùåé ñóììû

íåóñòîéêè, êîòîðóþ âûïëà÷èâàåò îäíà êîìàíäà äðóãîé êîìàíäå. Ïîêàçàíî, ÷òî ñóììà

íåóñòîéêè ìîæåò èñïîëüçîâàòüñÿ â êà÷åñòâå êðèòåðèÿ îïòèìèçàöèè â çàäà÷å îïòèìè-

çàöèè ñòðàòåãèè èãðû.

Êëþ÷åâûå ñëîâà: ýñòàôåòà; äâóõïàðàëëåëüíûé ïîëóìàðêîâñêèé ïðîöåññ; äèñòàí-

öèÿ; ýòàï; ìàðøðóò; ðàñïðåäåëåííàÿ íåóñòîéêà; ðåêóðñèâíàÿ ïðîöåäóðà.
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