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Case of two teams competition, which should overcome the distance divided onto stages,
is considered. In the case under consideration, every stage has its own number of routes,
which the participants of the team may select to overcome. It is shown, that competition
bears the character of the relay race, and two-parallel semi-Markov process is the natural
approach to modelling of the situation.

From all possible routes two were selected. The conception of switching space, which
display all possible switching trajectories is proposed. The formula for calculation of
switching trajectories number is acquired. It is shown, that ordinary semi-Markov process
with the use of the recursive procedure may be obtained from the complex two-parallel
semi-Markov process, which describes the wandering through selected routes. The formulae
for realization of the recursion are proposed.

Conception of distributed forfeit is proposed. It is shown, that forfeit depends on
difference of stages, teams overcome at current time, and routes, on which participants
solved to overcome stage. The formula for estimation of total forfeit, which one team pays
to other team is obtained. It is shown, that the sum of forfeit may be used as the optimization
criterion in the game strategy optimization task.

Keywords: relay race; two-parallel semi-Markov process; distance; stage; route;

distributed forfeit; recursive procedure.

Introduction

The paired relay race is the basic principle of any concurrency unfolding in physical
time in manifold fields of a human activity, such as economics, politics, defense, sport, etc.
[1-4]. Classic relay races presume that a distance, teams should overcome, is divided onto
stages [5], and stages with the same numbers are equal to both teams of the participants.
If the distance overcoming efficiency depends on the winning or losing the stages, than
there is only one way to win the race as a whole: to win all the stages of the distance. This
solution is acceptable for a team, which has necessary resources to maintain a selected
high speed on the stage, but if it has not, team tries to find asymmetric response, which
supposes reaching the final point of the distance along the alternative route, which the
participants can select. In this case there is a number of parameters, the teams can vary
and control, namely, division the distance on the stages, time characteristics of overcoming
stages, routes of the stages.

For an external observer selection of routes by the participants of the team is made
randomly, so model of running the distance on selected routes should be the stochastic
one [6, 7]. The availability of alternative generates premises for the emergence of game
situations. Those teams which can evaluate the benefits and losses from choice of this or

Bectuuk FOYpI'Y. Cepusa «MaTteMaTudecKoe MoJejinpoBaHUe 15
u nporpammupoBanues (Bectunk FOYpI'Y MMII). 2018. T. 11, Ne 1. C. 15-26



E.V. Larkin, A.V. Bogomolov, A.N. Privalov, N.N. Dobrovolsky

that distance route, may construct the optimal strategy of relay races games for winning
the competition as a whole.

Approaches for forecasting of benefits and losses of relay-races games are currently
known insufficiently, that explains necessity and relevance of the investigations in this
domain.

1. The Structure and the Model of Paired Alternative Route
Relay-Race

Distance, stages and routes are shown in Fig. 1, which explain the following
assumptions [5]:

1) relay race includes two teams of participants, A and B;

2) teams act independently of each other and should overcome the distance in a real
physical time;

3) the distance is divided into J stages;

4) j-th stage of A team includes K (A4, j) routs, j-th stage of B team includes K (B, j)
routes K (A, j) # K(B, j);

5) after finishing j-th stage the participant of team A may choose one of K (A4, j+1)
possible routes of the (j+1)-th stage, after finishing j-th stage the participant of team B
may choose one of K (B, j+1) possible routes of the (j+1)-th stage;

6) both teams, A and B, start the distance at once;

7) the time of passing of k(4, j)-th route, 1(4, j) < k(A4, j) < K(A, j) by the
participant of team A is a random one, and is defined with accuracy to density;

8) the time of passing of k(B, j)-th route, 1(B, j) < k(B, j) < K(B, j) by the
participant of team A is a random one, and is defined with accuracy to density;

9) after completion of j-th stage by previous participant next participant starts (j+1 )-
th stage without a lag;

10) winning or losing of the competition stage is understood as completion of the stage
the first or not the first;

11) winner’s forfeit is distributed in time and depends on the difference of stages and
routes, which a winner and loser pass.

In addition to assumptions:

1) nodes {Aao, oy Aagy AaJ} of graph "Team A" mean relay points of distance,
which should overcome team A;
2) nodes {Paq, ..., Paj, ..., Pa;} of graph "Team B" mean relay points of distance,

which should overcome team B;
3) nodes “ag and Pag are the starting points of the distance;
4) nodes 4a; and Pa; are the end points of the distance.
The model of the paired alternative route relay-race may be performed as two-parallel

semi-Markov process [7-9]
Ah(t) 0
h (t) - |: 0 Bh (t) ) (1)
where t is the time, 2k (), Ph (t) are semi-Markov matrices [8, 10, 11] of size J x J, 0 is
the zero matrix of size J x J and
U (t) = [hmayna ()] Ph(t) = [hms)am) ()] - (2)
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Fig. 1. Relay-races with alternative routes

In its turn semi-Markov matrices (2) are as follows

()= ["ha )], Pht) = [Phu )], (3)

where “h;; (t), Bh;; (t) are elements of matrices (3), correspondingly, disposed on the
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intersection of j-th row and [-th column

A . B .
Ap B hj(t), whenl=j+1, g, B h;(t), whenl=j+1,
hi(t) = { 0, otherwise, hia(t) = 0, otherwise, (4)
Ah; () = [haag) (8) 5 oo hagag) (), oy hiag )], 1< <,
th (t) - [hl(B,j) <t>7 ceey hk:(B,j) (t), ceey hK(B,j) (t)} ; ]_ S ] S J,

hiag) () = prag) () frag) (1)

hi(s.) () = Pres.g) (8) frsa) (8)

(5)

(6)

Pr(Aj) = / i) (t) dt; pesg) = / his.j (1) dt, (7)
0 0

where py(a ;) is the probability of choice of k (A, j)-th route by j-th participant of team
A, pr(p,j) is the probability of choice of k (B, j)-th route by j-th participant of team B,
fr(a,j) (t) is the time density of overcoming k (A, j)-th route by j-th participant of team A4,
Jr(B,) (t) is the time density of overcoming k (B, j)-th route by j-th participant of team B,
hica,jy (t) is the weighted time density of overcoming k (A, j)-th route by j-th participant
of team A, hi(p) (1) is the weighted time density of overcoming k (B, j)-th route by j-th
participant of team B.

For 4h; (t), Bh; (1)

K(A,j5) K(B,j)
Z Pr(A)i(Ag) = 1, Z Pr(Bj)i(B.j) = L. (8)
(4,5)=1 I(B,j)=1

Let us select from all possible routes of wandering through the semi-Markov processes
Ah (t) and Bh (t) routes as follows

SZ(A) = [k‘ (A,l), PN kZ(A,j), ceey k?(A, J)],

SI(B):[k<B71>7 ceey k(B7]>7 ceey k(B7‘])] (9)
The common number of selected routes is equal to

J J

KA) =[x, KB)=]]K®B.)). (10)

J=1 Jj=1

The weighted time density of wandering from starting points of the distance “ag, Zaq
till end points of the distance “a; Ba; through the selected route is as follows [10-13]

hiay () = L7 TTZy L [huag (0] |

i (1)
hies) (t) = L7 [[o L (s ()] ] 5

where L[...] and L™'[...] are direct and inverse Laplace transforms, correspondingly.
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The probability of remaining the process on routes (9) may be estimated as follows:

o0 J o0 J
Pr(a) = / hucay (8 dt = [ [ prcasy, premy = / hiesy () dt = [ [ puess: (12)
0 J=1 0 Jj=1

The pure time density of wandering from states “ag, Zay till states ‘ay, Pay through
the selected route is as follows [14, 15]

hicay (t) his)y (t)
freay (t) = M frp) (t) = B (13)
Dr(A) Dr(B)
The time density of wandering from the state ™ayq till the state "a; on any possible
arbitrary route (13) is as follows

K(A) K(B)
s )= D @), Pl = D hus (1), (14)
k(A)=1 K(B)=1

2. Competition in Relay-Races

Let us extract from all possible wandering routes of semi-Markov processes “h () and
Bh (t) routes (9), and numerate stages, in which participants situated at current time, as
it is shown on the Fig. 1. Then the second Cartesian degree of the set {1, ..., j, ..., J + 1}
gives S space of stages, in which teams A and B are situated in the current time during
relay-race (Fig. 2). The race begins from state (1, 1) and ends at state (J+1, J+1).
Common number of states in the space § is equal to (J + 1)*. Initial meaning of the
vector is [1, 1|. Wandering through the space has the character of evolution, in which after
every switch one of the elements of vector increments by unit. At any switch incremental
element is the only one. Switches continue till the vector reaches the state [J+1, J+1]
(teams are out of race). The common number of switches during evolution is as 2.J.

The common quantity of switch trajectories grows fast in dependence of number of
stages (R. Bellman’s "curse of dimensionality" [16]). To define common quantity of switch
trajectories let us find the (2J)-th Cartesian degree of the set {A, B} and gather all
vectors, which include J A-s and J B-s into one set. Cardinality of this set is equal to J

-th binomial coefficient, i.e.
(2J)!
Qsy = R (15)

During evolution route realizations j(A) and j(B) compete between them [5, 9]. In
common case, when two participants compete which start simultaneously and run their
stages during the time, definable with densities 64 (t) and 6 (t), then time of completion
the stage the first is as follows

Op () =04 (t)[1 —Op )] +0p () [1 —OA(t)] = Oua(t) +0us (), (16)

where 6,4 (t) is the weighted density of the time of winning the stage by participant A,
0,5 (t) is the weighted density of time of winning the stage by participant A, ©_ (t) =

t
[ 0. (7)dr is a distribution function.
0
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Y

Fig. 2. Space S of states (a) and the tree of switches (b)

The probabilities of the winning participants A and B, and pure time densities of such
events are as follows

TwA = /GwA <t> dt7 TwB — /QwB (t) dt7
0 0

Opa (t O,5 (t
(PwA:J7 PwB = B()
TwA TwB

(17)

The second formula, necessary for relay-races simulation, is the dependence for the
waiting time density. If in the competition wins the participant B, he waits until the
participant completes his stage. The formula for density of waiting time is as follows [3, 5]

n(t) [ 65 (€)04(t+€)de
QBHA (t) = 0

0 , (18)
S ©5(t)dO4 (t)

where 7 (t) is the Heaviside function, ¢ is additional argument having the dimension of
t

time, @AB (t) = feA,B (f) df
0

With the use of dependences (16) — (18) may be formed recursive procedure of
relay-race evolution analysis. The recursive character of the evolution follows from the
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competitive character of choice of the next switch direction in space S. For building up
the recursive procedure let us introduce auxiliary time density "g;ca) (£), "gj(a) (t), where r
is the common number of switching during evolution, j is the stage under consideration.
Example of evolution is shown in Table.

Table

Evolution m-th and n-th swarms

r j(A), J(B) Densities

0 L, 1 feca), Jusn), "g104), "91(8)

1 1,2 91(8)=>1(4); fr(B2), " 91(4),  G2(B)

2 2,2 Jea2) » "914)—2(B)

r ]:(A)a ](B) ) ng(A)’ 7”gJ'(B)

r+1 | j(4)+1, j(B) fecag+ns " giay iy T gy T gim)
R-2 J(A), J(B) - R_2gJ(A), R_2gJ(B)

R-1 | J(A), J(B)+1 A2 By— a4y " asa)

R J(A)+1, J(B)+1 | Relay-race is over

On the first phase of recursion (no switches are made) original time densities
Jr(a,1), fe(s,1) compete with each of them. To formalize the competition description next
substitution should be done

%914) = fran)s C91m) = frm)- (19)

After winning the competition the participant from team B, as it is shown in the table,
when r = 1, time densities, which participates in the next phase are defined as follows

Y14y = "g1m) () = "q1a) (1) = g10m)5100),

1QO(B) = fk(B,Q)a (20)
where %g1(g) (t) = %g1(a) (t) is the operation, defined as (18).
The probability of winning from the team B participant is defined with formulae (17),
which for the case under consideration is as follows

oo

Twi(B) = /91( ) (1) [1="Gha) (1)] dt. (21)

0

After winning in the second switch the participant from team A, as it is shown in
the table, when r» = 2, time densities, which participates in the next phase are defined as

follows ga(ay == fra2) » 2928y == '91(4)>2(B), etc.
Let us after r switches in competltlon partl(:lpate den51t1es 9i( A) and "g;(p). If in this

phase team A wins participant, then " = fioca+1) " 295(B) = "gj(a) = i(B);
Twj(A) = / 9i(A) (Zf) [1 - TGJ-(B) (t)} dt, etc. (22)
0
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In the (R-2)-th phase, when in competition of #72g;4) and #2g;(p),; team B, wins
participant with probability

o0

Twj(B) = /R_2g](3) (t) [1 — R_QGJ(A) (t)} dt, (23)
0

team A participant stays at the distance alone, and ends J-th stage at the time

=248y a4)-

3. Evaluation of Effectiveness of Alternative Relay-Race Strategy

It is quite natural that for the evaluation of effectiveness one would use the model, in
which team, which gets the stage with a higher number, acquires from the team, who gets
the stage with a lower number, the forfeit, and forfeit is defined as distributed payment
Cr(A,j)k(B,i) (1), the value of which depends on the time, the difference of stages and selected
routes. The analysis of the evolution shows that the situation, which changes the conditions
of forfeit payments emerges from the winning of one of the participant (previous switch)
and lasts till the next switch. If after r switches densities "g;(4)(t) and "g;()(t) compete
with each other, then the common sum of the forfeit at the stage is as follows [3, 5]

"Cl(A,j),k(Bi) (QQ]J) =

Of "gia) (t) [1 = "Gy (1)] riagywsa (t) dt

(

= , when team A wins,
rgica) (0) [1="Gjpy ()] dt
b[ 3( )( ) [ i(B) )} (24)

o0

Of "gimy (1) [L = "Gicay (V)] crBaykag) (t) dt

, when team B wins,

Zo rgim) () [1 =" Giay ()] dt

\

where ¢y, is the number of switching trajectory realization (common quantity of
realizations Qy; is defined with (15)).
The cost of the pair competition at the gj,-th switching trajectory is as follows

2J
Crian ki (@37) = D Crianaesi (437) - (25)
r=1

The probability of emergence of g-th trajectory is as follows

27
Th(A,j)k(B.i) (@) = H Tw (1), (26)
r=1

where 7, (r) is the probability of the proper direction choice at the switching trajectory,
as it is shown in formulae (21) — (23).

The common cost of the paired teams A and B relay-race at the pre-determined,
k(A)-th and k(B)-th routes is as follows

Q3
_ J J
Criari(s) = D, Ti(aiyi(5) (437) Crtmapacs.) (4r) - (27)
a3,=1
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With the use (16) common cost of competition at the mentioned route pair is as follows

K(B) K(A)

Cas= Y > PrayprdCra)ss)- (28)

k(B)=1 k(A)=1

Formula (28) may be used as a criterion of optimization of the behaviour of teams
in relay race games. In this case the selection of possible routs, probabilities and time
characteristics of the stage overcoming are alternative parameters. The methods of
optimization task solving may be adopted from the game theory.

Conclusion

Working out the approach of modelling relay races with selectable routes opens a new
page in the game theory because the competition develops in real physical time, and model
of relay race practically reproduces real life situations. Moreover, at every stage, as in real
life, there is a race between the participants of different teams, in which any participant can
win or lose by time, that amplifies competitive moments of the game under consideration.

The further investigation in this area should be directed to finding more tight links with
the classical game theory and use typical optimal strategies in the dynamic competitive
condition [17, 18]. Also it is possible to work out radically new strategies, oriented only
on the use of the model of paired alternative route relay-races.

Acknowledgements. The research was carried out within the state assignment of the
Ministry of Education and Science of Russian Federation (no. 2.3121.2017/PCH).

References

1. Heymann M. Concurrency and Discrete Event Control. IEEE Control Systems Magazine,
1990, vol. 10, pp. 103-112. DOI: 10.1109/37.56284

2. Chatterjee K., Jurdzinski M., Henzinger T. Simple Stochastic Parity Games. Lecture Notes
in Computer Science, 2003, vol. 2803, pp. 100-113. DOI: 10.1007/978-3-540-45220-1 11

3. Ivutin A.N, Larkin E.V. Simulation of Concurrent Games. Bulletin of the South Ural State
University. Series: Mathematical Modelling, Programming and Computer Software, 2015,
vol. 8, no. 2, pp. 43-54.

4. Valk R. Concurrency in Communicating Object Petri Nets. Concurrent Object-Oriented
Programming and Petri Nets, 2001, pp. 164-195.

5. Larkin E.V., Ivutin A.N., Kotov V.V., Privalov A.N. Simulation of Relay-Races. Bulletin of
the South Ural State University. Series: Mathematical Modelling, Programming and Computer
Software, 2016, vol. 9, no. 4, pp. 117-128.

6. Larkin E.V., Ivutin A.N. Estimation of Latency in Embedded Real-Time Systems. 3-rd
Meditteranean Conference on Embedded Computing (MECO-2014). Budva, Montenegro,
2014, pp. 236—239.

7. Korolyuk V., Swishchuk A. Semi-Markov Random FEvolutions. N.Y., Springer-Science and
Buseness Media, 1995. DOI: 10.1007/978-94-011-1010-5

Bectauk FOYpI'Y. Cepusa «MartemaTudecKoe MoJejinpoBaHue 923
u nporpammupoBanues (Becrunk FOYpI'Y MMII). 2018. T. 11, Ne 1. C. 15-26



E.V. Larkin, A.V. Bogomolov, A.N. Privalov, N.N. Dobrovolsky

8. Iverson M.A., Ozguner F., Follen G.J. Run-Time Statistical Estimation of Task
Execution Times for Heterogeneous Distributed Computing. Proceedings of 5th IEEE
International Symposium on High Performance Distributed Computing, N.Y., USA, August
6-9, 1996. N.Y., Institute of Electrical and Electronics Engineers, 1996, pp. 263-270.
DOI: 10.1109/HPDC.1996.546196

9. Limnios N., Swishchuk A. Discrete-Time Semi-Markov Random Evolutions and Their
Applications. Advances in Applied Probability, 2013, vol. 45, no. 1, pp. 214-240.
DOI: 10.1239/aap/1363354109

10. Markov A.A. Extension of the Law of Large Numbers to Dependent Quantities. [zvestiya
fiziko-matematicheskogo obshchestva pri Imperatorskom kazanskom universitete, 1906, vol. 15,
pp. 135-156. (in Russian)

11. Bielecki T.R., Jakubowski J., Nieweglowski M. Conditional Markov Chains: Properties,
Construction and Structured Dependence. Stochastic Processes and Their Applications, 2017,
vol. 127, no. 4, pp. 1125-1170. DOI: 10.1016/j.spa.2016.07.010

12. Janssen J., Manca R. Applied Semi-Markov Processes. N.Y., Springer, 2005.

13. Larkin E.V., Ivutin A.N., Kotov V.V., Privalov A.N. Semi-Markov Modeling of Command
Execution by Mobile Robots. Interactive Collaborative Robotics (ICR 2016) Budapest,
Hungary, Lecture Notes in Artifical Intelligence. Subseries of Lecture Notes in Computer
Science. N.Y., Springer, 2016, pp. 189-198.

14. Bauer H.  Probability =~ Theory. Berlin, N.Y., Walter de Gruyter, 1996.
DOI: 10.1515/9783110814668

15. Shiryaev A.N. Probability. N.Y., Springer Science and Business Midia, 1996.

16. Bellman R.E. Dynamic Programming. N.Y., Dover Publications, 2003. DOI: 10.1007/978-1-
4757-2539-1

17. Myerson R.B. Game Theory. Cambridge, Harvard University Press, 1997.

18. Goetz B., Peierls T. Java Concurrency in Practice, Boston, Addison Wesley, 2006.

Received January 22, 2018

YIK 519.837 DOI: 10.14529 /mmp180102
SQCTAPETHI ITO BIBPAHHBIM AJIBTEPHATUBHBIM MAPITTPYTAM

E.B. Jlapxun', A.B. Boeomonos®, A.H. IIpusanos®, H.H. Jlob6posoabcruti'
"Tynnexnit rocynapersennsiit yausepenret, 1. Tymna, Poccniickaa @enepanns
2Tocynapcrennbiit nayunsrii nentp Poccniickoit @egepanny — PenepaibHbiii
MeauuHCKui buodusmdecknii meHtp uMm. A.Vl. Byprasgana, r. Mocksa,

Poccuiickag ®enepanust

STymbckuil TocyTapeTBeHHbIH megarornueckuii yausepenreT um. JI.H. Tomcroro,

r. Tyna, Poccuiickas ®eeparnus

PaccmarpuBaerca MaTeMaTudeckas MOIENh, MPEICTABISIONAas coboil dhopManmmn3amo
KOHKYPEHIIUHU JABYX KOMaH/, KOTOpbIe JOJKHBI IPEOI0JIEBATH JAUCTAHIIAIO, COCTOAIIYIO U3
sramoB. B paccMaTpuBaeMoM CiIydae Ha KazKIIOM 3Talle eCTh PA3JIMIHOE KOTUIECTBO MAaPII-
PYTOB, KOTOpPbIE YYACTHUKN KOMAH/bI MOI'YT BBIOpDaTh i mpoxoxkaenwus. 1lokazano, o
KOHKYPEHIUS HOCUT XapakTep 3cradersl, a ABYXMapaIeIbHBIA MTOJIYyMAapPKOBCKHH MTPO-

IECC — €CTECTBEHHBIN I10/IX0J K MOAEJINPOBAHUAIO CUTYAIIUH.
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ITonygena ¢opmyna mad pacdera UHCIa KOMMYTAIMOHHBIX Tpaekropwmii. Ilokasamo,
9TO U3 CJIOZKHOI'O JIBYXIIAPAJLJIEIBHOIO IOy MAPKOBCKOIO IIPOIECCA, OIUCHIBAIOMIErO OJIy K-
JAHUE TI0 BRIOPAHHBIM MapIIPYTaM, MOXKHO MOJIYYUTh OOBITHBIA MOy MAPKOBCKHI MPOIECC
C UCIIOJIHb30BAHUEM PEKYPCUBHOM mponenypol. [Ipemioxkenbr (DOPMyAbL I8 peaTu3alun pe-
KypCumu.

IIpenmoxkena KoHIenmusa pacupemeseHHol meycroiiku. I[lokasamo, 9T0 HeycToOHKa 3a-
BUCHT OT PA3HOCTHU STAIOB, KOMAH/IbI IIPEOJOJIEBAIOT B TEKYIIEEe BPEMs M MAapPIIPYTHI, 11O
KOTOPBIM YUACTHUKU PEITaIn npeonosers 3ran. [lomydena dhopmysta omneHku O0Iei CyMMbL
HEYCTOWKH, KOTOPYIO BBILIAYMBAET OJHA KOMAHIA Ipyroit Komanmae. [lokasamno, 9ro cymma
HEYCTOWKM MOXKET MCIOJIb30BATHCA B KAYECTBE KPUTEPHUsi ONTUMUBAINNA B 33a49€ ONTUMU-
3amyuyu CTPATErUN UTPHI.

Karoueewe crosa: scmadema; 08Yrnapaitesbrsili NOAYMAPKOGCKUT npoyece; ucman-

YUA; IMAN; MEPULPYN; PACNPEIEAEHNAA HEYCTNOTKA; PEKYPCUBHAA NPOUEIYPa.
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