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We suggest a mathematical model that describes railway network. This model is applied

to the problem of allocation locomotive for transportation of freight trains. The aim of

the optimization is to minimize the size of active locomotive �eet by choosing trains and

locomotives routes. An alternative formulation of the optimization problem is proposed with

the usage of a heuristic objective function, which makes it possible to construct an e�ective

decision algorithm. A new deterministic algorithm for suboptimal control is described. This

algorithm is a modi�cation of the previously proposed, based on the construction of routes

tree for each locomotive and, subsequently, the choice of such a route, in which the maximum

value of the given objective function is reached. Numerical experiments were carried out on

the example of the historical data of the Moscow Railway. The analysis and comparison of

the results are given.
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Introduction

Recently, the strategy of scienti�c and technological research of the Russian Railways
is especially aimed at carrying out complex works on the improvement and automation of
cargo management systems.

In many works [1�8] various methods and algorithms for the optimization of cargo
transportation by railway transport are considered. In [4] means for improving the
organization of freight transport are proposed. These means are based on the consideration
of a single model of the logistics supply chain of goods, including the production,
construction, reconstruction and maintenance of infrastructure, ensuring the reception of
all trains without delay, taking into account the uneven movement. The deterministic
combinatorial problem of forming trains and planning schedules for rail transport is
formulated in [6, 7]. In [7] various models are presented, which arise during planning the
movement in railway transport, in particular, the model of the operational control of the
movement of the composition and the model of the formation of freight �ows through
the sorting stations. In [8] two combinatorial problems are considered: the problem of
scheduling a non-periodic schedule and the problem of assigning a train to the platform.

1. Main De�nitions

Let a directed graph G = (V,A) corresponds to a part of a railway, where V is a set
of vertices, A is a set of edges. The vertices of the graph G are the main stations (freight
distribution center and stations where locomotives are changed). The edges of the graph
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G are the ways connecting the main stations. Some main stations are also depots. Let us
denote the corresponding subset of V by D.

Locomotives may move only by de�ned routes (so-called railway hauls), so we introduce
the following de�nition.

De�nition 1. A sequence of edges a1, . . . , aIP of the graph G is a railway haul P if the
following conditions hold:

1. Each edge ai = (vi−1, vi) is distinguished from other edges: ai ̸= aj, i, j ∈ {1, . . . , IP}.
2. The �rst vertex of �rst edge coincides with the last vertex of last edge, is a depot,

and di�ers from other vertices in the sequence: v1 = vP ∈ D, vi ̸= v1 for i = 2, IP − 1.

Also, we will consider subhauls and simple subhauls.

De�nition 2. Any subsequence of adjacent edges ai, ai+1, . . . , aj (1 ≤ i < j ≤ IP )
belonging to the haul P is a subhaul of the haul. Any edge ai = (vi−1, vi) belonging to the
haul P is called a simple subhaul.

Let L be the set of all considered locomotives. For any locomotive l ∈ L, a set of
feasible railway hauls is determined.

Let us de�ne the set Pl for any set P l, l ∈ L. The set Pl contains all simple subhauls
of hauls of the set P l.

Let S be a set of carried freight trains. Each train is described by its dispatch station
vs0, receiving station vsf , readiness time ts0, time τ sf , until which the train has to arrive at
the receiving station. This means that the tuple (vs0, t

s
0, v

s
f , τ

s
f ) corresponds to the train s.

Notice that this tuple de�nes the plan of transportation.
Locomotives and trains can move by preassigned routes only in certain periods of time

called train paths.

De�nition 3. A sequence of tuples (v1, t1, v2, τ2), (v2, t2, v3, τ3), . . . ,
(vIN−1, tIN−1, vIN , τIN ), is said to be a path N if the following conditions hold:

1) vi ∈ V , i = 1, IN , ti ∈ R, i = 1, IN − 1, τi ∈ R, i = 2, IN ;

2) (vi, vi+1) ∈ A, i = 1, IN − 1;

3) ti < τi+1, i = 1, IN − 1;

4) τi ≤ ti, i = 2, IN .

In this de�nition, ti corresponds to the departure time from the station vi, τi+1

corresponds to the arrival time to the station vi+1. The introduced conditions show
restrictions related with the movement of locomotives. Conditions 1 and 2 require that the
locomotives can move only by edges, condition 3 means that the departure time from the
current station is earlier than the arrival time to the next station, condition 4 means that
the arrival time to the station is earlier than the departure time from this station.

By analogy with subhauls and simple subhauls, let us introduce subpaths and simple
subpaths.

De�nition 4. Any subsequence of adjacent tuples belonging the train path N is called a
subpath. Any tuple (vi, ti, vi+1, τi+1), i = 1, N − 1, belonging to the train path N is called
a simple subpath.
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Let a set N of train paths be given. Let the unordered set of all simple subpaths
belonging to each path N ∈ N denote by F(N). We denote the set of all simple subpath
belonging to the set N by N , i.e.

N =
∪

N∈N

F(N).

Since the locomotives move only by paths and hauls, we introduce the de�nition of a
feasible route with respect to the set of hauls. In this de�nition, we take into account that
the locomotives have to undergo maintenance not later than in time T (48 hours) after
the previous maintenance. The duration of maintenance is denoted by tTO (8 hours). It is
assumed that at the initial time each locomotive l ∈ L is described by time interval τ lTO,
which has passed since the previous maintenance. If a locomotive undergoes maintenance at
the initial time then the value τ lTO is negative and equals in magnitude the time remaining
until the �nish of the maintenance.

De�nition 5. A subsequence of simple subpaths (v1, t1, v2, τ2), (v2, t2, v3, τ3), . . . ,
(vIl−1, tIl−1, vIl , τIl) is called a feasible route Ml of the locomotive l with respect to the
set of hauls P l if the following conditions hold:

1) τi ≤ ti, i = 2, Il − 1;
2) (vi, vi+1) ∈ Pl, i = 1, Il − 1;
3) there exists an increasing subsequence i1, . . . , ifl of numbers from the set

{2, 3, . . . , Il} such that

τ lTO + τi1 ≤ T, (1)

tij − τij ≥ tTO, j = 1, fl − 1, (2)

τij − tij−1
≤ T, j = 2, fl, (3)

τIl − tfl ≤ T, if fl ̸= Il. (4)

Condition 1 requires that the arrival time to the station is earlier than the departure
time from this station. Condition 2 restricts a feasible transportation by the hauls.
Condition 3 requires maintenances in certain time interval. The sequence ti1 , . . . , tifl
corresponds to the times of the maintenances start. According to (1) the time of the �rst
maintenance the start is not later than time interval T since the previous maintenance.
According to (2) the maintenance cannot be less than tTO. It follows from (3) that time
interval between the departure after the maintenance and the next maintenance cannot
be more than T . According to (4), the departure time after the last maintenance must be
later than the time T before the arrival to the route termination.

Note that the route is a spatiotemporal concept. Let us denote the set of feasible routes
of the locomotive l by Ml. The initial and terminal stations of the route Ml are denoted
by v0(Ml) and vf (Ml) respectively. The time of the �rst path beginning in the route is
denoted by t0(Ml). The arrival time to the terminal station is denoted by τf (Ml).

Let us introduce the de�nition of a train feasible route. This concept is also
spatiotemporal.

De�nition 6. A sequence of simple subpaths (v1, t1, v2, τ2), (v2, t2, v3, τ3), . . . ,
(vIs−1, tIs−1, vIs , τIs) is called a feasible route of the train s ∈ S and is denoted by Rs

if the following conditions hold:
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1) v1 = vs0;
2) vIs = vsf ;

3) τi ≤ ti, i = 2, Is − 1;
4) ts0 ≤ t1;
5) τ sf ≥ τIs.

Conditions 1 and 2 de�ne the initial and terminal stations of the route, condition 3
restricts the departure and arrival time, conditions 4 and 5 require to carry out all needed
transportation on time.

The set of feasible routes of the train s is denoted by Rs.
Let us de�ne the set F(Ml) of all simple subpaths belonging to the route Ml for all

locomotives l, l ∈ L. Also, we de�ne the set F(Rs), s ∈ S, of all simple subpaths belonging
to the route Rs of the train s.

2. Statement

Let us consider the part of the railway, which corresponds to the graph G = (V,A)
de�ned above. Suppose that L is a set of locomotives, S is a set of trains, N is a set of
paths. Let N be the corresponding set of simple subpaths. For all locomotives l ∈ L, a set
P l of hauls is de�ned. Let Pl be the set of simple subhauls.

At the initial time, some locomotives can move, so it is supposed that locomotive l ∈ L
can depart only from the �xed station vl0 after the time tl0.

Let the time τ lTO since the previous maintenance is given for all locomotives l ∈ L.
The set of feasible routes Ml is given according to de�nition 5 taking into account the
time τ lTO for all locomotives l ∈ L. Similarly, for all trains s ∈ S, the set of feasible routes
Rs is given. Let |L| be the number of locomotives from the set L with non-empty route.

Let the set of paths Ns ⊂ N that can be used to carry the train be given for all trains
s ∈ S. The set of all corresponding simple subpaths is denoted by Ns. These constraints
are needed because some paths can be used only for certain transportation.

Let M = {Ml}l∈L be a selected set of routes for all locomotives, R = {Rs}s∈S be
a selected set of routes for all trains, M = {Ml}l∈L be a set of feasible routes for all
locomotives, R = {Rs}s∈S be a set of feasible routes for all trains.

It is required to select a set M of the locomotive routes and a set R of the train routes
such that the number |L| of the exploited locomotives is minimal and all train routes are
covered by locomotive routes. This means that the following problem should be solved:

|L| → min
M∈M,R∈R

(5)

subject to
Ml ∈ Ml, l ∈ L, (6)

Rs ∈ Rs, s ∈ S, (7)∪
s∈S

F(Rs) ⊂
∪
l∈L

F(Ml), (8)

F(Rs) ∩ F(Rs′) = ∅, s ̸= s′, s, s′ ∈ S, (9)

F(Ml) ⊂ N , l ∈ L, (10)
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F(Rs) ⊂ Ns, s ∈ S, (11)

v0(Ml) = vl0, (12)

t0(Ml) > tl0. (13)

Conditions (6) and (7) mean that we consider only the feasible locomotive routes and
train routes. In particular, this means that feasible hauls exist for feasible routes. Also,
notice that the feasible route requires to carry out the plan on time.

Condition (10) requires that the train routes contain only simple subpaths, because
the set

∪
l∈L

F(Ml) ⊂ N contains simple subpaths that belong to some route of locomotive.

Condition (11) de�nes the similar requirement for train routes, moreover, it restricts the
selection of feasible paths to carry a train. Condition (8) means that all simple subpaths
belonging to the route of a train are used for a locomotive, i.e. all trains are carried by the
locomotives. Also, it follows from this condition that the locomotives can move by simple
subpaths that are not used by trains. Therefore, each used path corresponds to a train
with one or several locomotives or to a locomotive without train.

Condition (9) means that the routes of trains cannot intersect, i.e., one simple subpaths
cannot be used for two trains. Since the locomotives can move together or with a train
(so-called auxiliary run), the similar condition is not used for the locomotives.

Conditions (12) and (13) de�ne an initial state of the locomotives.
Notice that the set S of trains and the set N of paths are de�ned by the daily

transportation plan and by the number of days of the general plan.
In the formulated problem, routes of the locomotives and trains should be selected.

Let us consider a special case of the problem (5) � (13), by refusing optimization on trains
and solving only the task of locomotives allocation. So, we suppose below that the set of
feasible routes Rs of the train s ∈ S contains only one route. Therefore, the problem is
reduced to the problem of locomotive allocation to carry trains with certain routes.

Let us write the objective function that helps us to make decision about the rote Ml

from the set of feasible tra�c routes Ml:

Φ(Ml) = |Ml|. (14)

Thus, we can formulate an optimization problem of choosing the optimal route for the
locomotive in the sense of the objective function (14):

Φ(Ml) → max
Ml∈Ml

(15)

subject to (6) � (13).
Solving the formulated problem by specifying the optimal routes for the sequence

of locomotives allows us to �nd a suboptimal solution of the problem of the optimal
assignment of locomotives (5) � (13) formulated in [1]. Algorithm for this suboptimal
solutions is described in the following section.

3. Algorithm of Locomotives Allocation

Let a non-empty set S = {si | i = 1, |S|} of trains with non-empty routes be given. Let
n = (·, ·, vlf , τ l) be the terminal simple subpath of the route Ml, v

l
f be the terminal station
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of the route (or initial station in case of an empty route) and τ l be the arrival time of
the locomotive l ∈ L at the station vlf . The algorithm is based on building of the possible
routes tree for the locomotive and further selecting the desired route depending on the
given criterial function Φ. We denote routes tree of the locomotive l by Tl, the vertices in
the tree are simple subpaths, the root of the tree f is a simple sbpath n.

Algorithm
0. Let i := 1, j := 1, k := 1, m := 1.
1. For the locomotive li ∈ L, we put simple subpath n to the root of the tree Tl.
2. State train sj ∈ S, and simple subpath nk ∈ Rsj .
3. If τ li 6 t(nk), (v0(nk), vf (nk)) ∈ Plk , proceed to step 4, otherwise go to 5.
4. If vlif ̸= v0(nk), then search a simple subpath N∗ for distillation of a locomotive li

to nk, if it is not found, then make j := j + 1, k := 0 and go back to 3. Proceed to step 5.
5. If j = |S| and k = |F(Rs)|, then procced to 7, otherwise let j := j + 1, k := 0 and

go back to step 3.
6. Put simple subpath nk in the tree Tl on level m.
7. We will consider each resulting leaf as the route of a new tree, if m = m∗ go to step

8, otherwise we accept m := m+ 1, for each resulting tree, we repeat the algorithm steps
from the second one.

8. The tree is built. According to the given criterial function Φ, we select the best
route from the resulting tree. If there are not transported trains, set i := i+ 1, go to step
1, otherwise, go to step 9.

9. The end of the algorithm, the solution of the problem is obtained.
The algorithm allows us to �nd a suboptimal solution of the problem of assigning

locomotives to compositions in the sense of a given criterial function Φ. The variable m∗

used in step 7 of the algorithm limits the depth of the tree construction. The algorithm
has a recursive structure. Note also that the described algorithm is labour-intensive (it is
not di�cult to prove its exponential complexity). Nevertheless, for daily planning and in
conditions of a small number of permissible train paths for each locomotive, the usage of
such an algorithm proves to be e�ective.

4. Numerical Experiment Results

Numerical experiment was executed with the help of data provided by Moscow
Railway. Initial data characteristics are presented in Table 1.

Table 1

Initial data

The number of stations 40
The number of depot-stations 16
The number of marshalling yards 16
The number of trains in daily movement plan 598
The number of paths per day 1254
Plan period (days) 5

80 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2018, vol. 11, no. 1, pp. 75�83



ÏÐÎÃÐÀÌÌÈÐÎÂÀÍÈÅ

Here is Table 2 "Locomotives usage" for the solution obtained using the algorithm
described in the previous section. There are 6 rows in Table 2 because the �rst and the
last days are not complete (12 hour period was considered).

Table 2

Locomotives usage

Number of Day Number of locomotives exploited during the i-th day Total
trains and taken in the j-th day

i
j

1 2 3 4 5 6

299 1 321 0 0 0 0 0 321
598 2 319 79 0 0 0 0 408
598 3 320 74 3 0 0 0 407
598 4 321 78 2 1 0 0 420
598 5 320 79 3 1 0 0 416
299 6 294 50 1 1 0 0 350

It is not di�cult to see that the matrix track is the value of the objective function.
Let us mention that new locomotives are not being put into operation at the end of the
period. This indicates the stabilization process. To compare with [1] we got two times
faster stabilization and the same locomotive �eet size.

Let us compare the solution with the historical data of locomotives usage by Moscow
Railway. Overall locomotive Moscow Railway �eet is about 900 locomotives. 700 of them
are used every day. Thus, we can make a conclusion that our solution is two times better
than the current one. However, it should be noted that the model does not take into
account all limitations in the real work of the railway.

Conclusion

In this work, the mathematical model to allocate locomotives for transportation
of freight trains is suggested, the algorithm to solve the problem and its software
implementation are developed.

A mathematical model of the designation of locomotives for the transportation of
freight trains is proposed in the paper. An alternative formulation of the optimization
problem is presented with the use of a heuristic objective function. An e�ective algorithm
for solving the problem was developed and its software implementation was carried out.
The result of numerical experiments has shown that the suggested method allows us
to reduce the number of exploited locomotives about twice. However, we should notice
that in practice this result is di�cult to obtain, because in the considered example a
lot of constrains are not taken into account, particularly, we consider only one type of
maintenance, we do not consider possible random deviations from the timetable. But the
obtained result allows us to hope that the found solution will provide e�ective locomotives
usage.
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ÀËÃÎÐÈÒÌ ÎÐÃÀÍÈÇÀÖÈÈ ÝÔÔÅÊÒÈÂÍÎÉ ÐÀÁÎÒÛ ÏÎÄÂÈÆÍÎÃÎ
ÑÎÑÒÀÂÀ ÄËß ÃÐÓÇÎÂÎÃÎ ÄÂÈÆÅÍÈß

Ì.Â. Áóÿíîâ, À.È. Êèáçóí

Ìîñêîâñêèé àâèàöèîííûé èíñòèòóò, ã. Ìîñêâà, Ðîññèéñêàÿ Ôåäåðàöèÿ

Ðàññìàòðèâàåòñÿ èçâåñòíàÿ ìàòåìàòè÷åñêàÿ ìîäåëü óïðàâëåíèÿ ãðóçîâûìè ïåðå-

âîçêàìè. Ñòàâèòñÿ çàäà÷à îïòèìèçàöèè óïðàâëåíèÿ ñ êðèòåðèåì â ôîðìå îáúåìà ýêñ-

ïëóàòèðóåìîãî ïàðêà ìàãèñòðàëüíûõ ëîêîìîòèâîâ. Ïðåäëàãàåòñÿ àëüòåðíàòèâíàÿ
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ïîñòàíîâêà çàäà÷è îïòèìèçàöèè ñ èñïîëüçîâàíèåì ýâðèñòè÷åñêîé öåëåâîé ôóíêöèè,

ïîçâîëÿþùàÿ ïîñòðîèòü ýôôåêòèâíûé àëãîðèòì ðåøåíèÿ. Îïèñûâàåòñÿ íîâûé äåòåð-

ìèíèðîâàííûé àëãîðèòì ñóáîïòèìàëüíîãî óïðàâëåíèÿ. Óêàçàííûé àëãîðèòì ÿâëÿåòñÿ

ìîäèôèêàöèåé ðàíåå ïðåäëîæåííîãî, îñíîâàííîãî íà ïîñòðîåíèè äåðåâà ìàðøðóòîâ

äëÿ êàæäîãî ëîêîìîòèâà è, â ïîñëåäñòâèè, âûáîðà òàêîãî ìàðøðóòà, ïðè êîòîðîì äî-

ñòèãàåòñÿ ìàêñèìàëüíîå çíà÷åíèå çàäàííîé öåëåâîé ôóíêöèè. Ïðîâåäåíû ÷èñëåííûå

ýêñïåðèìåíòû íà ïðèìåðå èñòîðè÷åñêèõ äàííûõ Ìîñêîâñêîé æåëåçíîé äîðîãè. Ïðèâî-

äèòñÿ àíàëèç è ñðàâíåíèå ïîëó÷åííûõ ðåçóëüòàòîâ.

Êëþ÷åâûå ñëîâà: òåîðèÿ ãðàôîâ; öåëî÷èñëåííàÿ îïòèìèçàöèÿ; ãðóçîâûå ïåðåâîç-

êè; àíàëèç àëãîðèòìîâ.
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