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In this paper we prove some new results on Sturm—Liouville abstract problems of the
second order differential equations of elliptic type in a new non-commutative framework.
We study the case when the second member belongs to a Sobolov space. Existence,
uniqueness and optimal regularity of the strict solution are proved. This paper is naturally
the continuation of the ones studied by Cheggag et al in the commutative case. We also
give an example to which our theory applies.
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Introduction

In a complex Banach space X consider the following second order differential
coefficient-operator equation

u"(z) + Au(z) —wu (z) = f(z), z€(0,1), (1)
together with the abstract Robin boundary conditions
u'(0) — Hu(0) = do, u(l) = uy. (2)

Here A and H are closed linear operators with domains D(A) and D (H) in X, f belongs
to LP(0,1; X) with 1 < p < 00, dy and u; are given elements of X and w is some large
positive number.

Our goal is to seek for a classical solution to (1) — (2), that is a function u such that

i) u € W22(0,1; X) N LP(0,1; D(A)),
it) u(0) € D(H),
i1i) u satisfies (1), (2).

Consider some fixed wg = 0 and for w > wy set
A, =A—wl.

This paper is a natural continuation of [1| and [2|, where the authors have studied (1)
— (2) in a commutative framework, when

feLP(0,1; X) with 1 <p<ooand feC?([0,1]; X) with § €]0,1].
In [1] authors have assumed that

X is a UMD space, (3)
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{ A, 1s a linear closed operator in X, [0,+o00] C p(Ay,) and n
4

sup |[A (A < 400

i 3 e

(note that the previous assumption implies that, for all w > wy, the operator Q, =

—(—A,,)"? is an infinitesimal generator of a bounded analytic semigroup on X).

{ for any s € R, (—A,,)" € £(X) and there exists 04 € ]0, 7| such that
HC(X)

sup He—9A|S|(_AwO)zs < +00, (5)
seR

H is a linear closed operator in X, R_ C p(H) and
up IECH + D)7 £y < 400, (6)
(Auy = ADTHH + D™ = (H+ D)7 (Au =A™, A2 0,20, (7)
3C > 1,30y €)0,7[: Vs € R, (H)” € £(X) and ®
1™ [l g(x) < CePl,
0
7“‘ + 0y €)0, 7. (9)

Assumptions (3) — (9) imply that
Q. — H is closed and boundedly invertible,

and there exists w, > wy such that, for all w > w,, the operator A, defined by

{ D)= D0D.
Aw:(Qw_H)_'_eQQw(Qw‘i‘H):

is also closed and boundedly invertible, see for instance [1, Proposition 7 and Lemma 8,
pp. 987-988].

Under these hypotheses, the authors built the representation formula of the solution
of (1), (2) in the form

u(z) = (e —e09w) A dy 4wy, +( 7Qu —e(2m2)Qw) (Q,,+ H ) A e urt
1
+§ (erW e(2- "”Q“) (Qu + H)AJ'Q ! f( 5Quw _ S)Q“) f(s)ds— (10)

1 1
el-)Qu—1 fe(l—S Qu f (s)ds+§Q; fe v Qu f (8)d3+§Q51 fe(s_x)wa (6)ds,
0 0 *

and have proved the following result.

Theorem 1. Assume (3) — (9). Let f € LP(0,1; X) with 1 < p < co. Then there erists

Wy = wo such that for all w > w, the two following assertions are equivalent:
1. Awldo,’ul € (D (A) ’X)QLP'
p7

2. Problem (1), (2) has a strict solution w, that is,
u € W*P(0,1; X) N LP(0,1; D(A)),

u(0) € D(H) and u satisfies (1), (2).
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Moreover, in this case, u is uniquely determined by (10).

Recently, in [3], the authors have developed an interesting new approach concerning
some general Sturm-Liouville problems with the same Robin boundary condition in 0.
They have assumed that:

e A, is boundedly invertible.

e A ! is a regularizing operator in the sense that

ASH(D(Qu)) € D(Q3). (11)
1. New Considerations and Main Result
Consider problem (1), (2). In this work we will suppose that
X is a UMD space, (12)

Ay, is a linear closed operator in X, [0,4+o00][ C p(Ay,) and
up A (Auy = ANl < o0, (13

for any s € R, (—A,,)" € £(X) and there exists 84 € |0, 7[ such that
Sup||€—0A\s\(_Aw0)zs L) < +00 (14)
seR
and
Fv €]0,1[,3C > 0: VY > 0,Yw > wy, D(A,) C D (H)
_ C (15)
and ||H (A, —pD)™ Yo < ——— .
H HE(X) |w+’u‘1/2+u

Observe that we have assumed that operator () is principal but we do not suppose the
commutativity between H and the resolvent of A.

This article is organized as follows. In Section 2 we do some consequences and present
preliminary technical results. In Section 3 we recall the representation formula of the
solution u of (1) — (2). In Section 4 we prove our main result. Finally, in Section 5 we give
some examples of application to boundary value problems.

2. Consequences

Let us write some remarks which follow from the above assumptions.

Remark 1.

1. (12) implies that X is reflexive, moreover the operator A,, is sectorial, thus D(A)
is dense in X.

2. From (13) and (14) we get for any s € R

o~ 64/ ( e Awo)“

< +00.
L(X)

sup
seR

3. By using Lemma 2.6, statement b, p. 103 in G. Dore and S. Yakubov [4], we get

3Ky, K; > 0,3cy > 0 such that Vw > 0, ]| €% || zx)< Koe 20v® (16)
and || Que*® [l < Kye oV,
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4. Under (13), for all w > wy, the operator I — €2?~ is boundedly invertible (see
A. Lunardi |5, Corollary 2.3.7, p. 62|).
5. Suppose that problem (1), (2) has a strict solution u. Then, from above

u € W (0,1; X)N LP (O, 1;D(Qi)) 1< p < oo,
which implies
w(0), w(1) € (D(@2).X), = (X,D@)),_, . (17)
(see Grisvard |6, Teorema 2, p. 678|). Recall that, for m € N\ {0}, we have

(D(QY) X)1jmpp = Do (1= 1/mp,p),

in virtue of [6]. So, by the well known reiteration Lions theorem, we get

Dgy (1 =1/mp,p) = Dq, (m —1/p,p) = Dq, (m —1+ (1 = 1/p) . p) =
—{peD@r ) Qe e (D(Qu) X))} = (D(Q) Xyt

In particular, for m = 2:

(D (Qi) 7X)1/2p,p = DQL% (1 - 1/2p7p) = (D (Qw) 7X)1+1/p,p =
—{p e D) Qup e (D(Q.). X),y,,} € DQU).
from which it follows that
u(0), u(l) € D(Qu)-

6. Assumptions (4) and (5) involve that, for w > wy, —A,, belong to the class BIP(X,0)
|7, 8, Definition 1, p. 431].
Lemma 1. Assume that (13) and (15) hold. Then there exist constants C > 0 and
wy > wy such that, for all w > wy operator (), = H s boundedly invertible and
C
Qo= 5oy < 5

Proof. For all w > wy we have

which implies
HQwIHL(X) S Wi’z

On the other hand HQ_' is well defined for all w > wy since, by (15), we have

HA wl —pl)™
1 Q| £y e dpl <

L(X)
du C
) I
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so there exists w; > wy such that for all w > w; we have

1

HHQ;1||L(X) S 9’

which implies that operator
Qut H=(I£HQ,") Q.
for w > wy is invertible and
-1 _ 11
1(Qu = )y = @2t (1 )|

_ 1
S HleHL(X) 1 — ||HQ;1||£(X) S w2

<
L(X)

O

Lemma 2. Assume that (13) and (15) hold. Then (Q, — H)™ " for w > wy is a linear
bounded operator from (D(Qu), X),,, into itself for all 0 €]0,1],q € [1,00].

Proof. Since @, is closed then @, (Q, £ H)_1 is bounded, whence we deduce that

(Qu+ H)™" € L(D(Qu), D(Qu)),

(here D(@Q,) is a Banach space endowed with the graph norm). So, by the well known
interpolation property we get

(QutH) " € £((D(Qu), X),,).

where 6 €]0,1[ and ¢ € [1, 00]. Therefore we deduce the result.
O

Remark 2. Observe that when @, and (Q,, £ H’)_1 are commuting for large w, the same
proof as above implies that

Qu(Qut H)™" € £((D(Qu), X))

Therefore in this work, instead of assumption (11), we suppose
Qu(Qu )" [(D(Qu) X)) € (D(Qu), X)yy, (18)

since operators @), and (Q, *+ H)f1 do not commute. This hypothesis is better in some
sense than (11). We recall that

(D(Qu)  X)yypy = {2 € X 1t £717Qu (Qu — 1) v € LUR: X) }
see P. Grisvard [6] and [9].

Lemma 3. Assume that (13) and (15) hold. Then there exists wy > wy such that for
w = wy the operator A,, defined by

{ D(Ay) =D (Qu)ND(H)=D(Qu),
Aw:(Qw_H)_I'eZQw (Qw+H)7
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15 closed, boundedly invertible and

AV =(Qu—H) " (I+W) with
{ WeL(X)adW (X)C () DQF). (19)
keN\{0}

Proof. Let w > wy. In virtue of assumption (15) and Lemma 1 operator A, can be written
as follows

Ay = (I =€) (Qu— H) +2Que*® =
= (I — e2) [1 +2 (1 — €22) 7 Quer (Qu — H) ' (Qu — H).
Set
T, =2 (1 — )" Que®® (Qu — H) "

Due to (16) and Lemma 1, we have for w > w,

—1 _
HTqux) =[ 2 SI - 32%) Que*% (Qu—H) ' |2 <
- -1
<2 (I —e*) 7 [leooll Que®@ lleooll (Qu—H) ™ |20 <

Ky 67260\/a
1-— Koe*%o\/"j) ’

< | Que®® |l |l (Qu—H) ™ o<
1 —[[e22] o) ) COS i (

which implies the existence of ws > w; such that for w > ws

20K,

—200\/(;
wl/2 (1 — Koe—QCO\/a) ¢ <1

hence I + T, € L£(X) is boundedly invertible. Then from Remark 1, statement 4 and
Lemma 1 we get that

Ay=(I—-e)I+T,)(Qu—H)

is closed and boundedly invertible with

A = (Qu—H) " (I+T) ' (I+8,) " =

=~ - _ 20
=(Qu-H) ' [I-T,I+T) [ -SulI+S.)""]. (20)
Moreover, for w > ws.
Tw = 2€2Qw (I - €2Qw)_1 Qw (Qw - H)_l S L (X> )
S, =—e*@ € £(X) and
T.(X), S, (X)c N D),
kEN\{0}
from which we deduce (19).
O

Remark 3. Assume that (13) and (15) hold. It is natural to consider for w > wy an
operator 11, (instead of A,) defined by

{ D(IL,) =D (Qu.)ND(H) =D (Qu),
I, = (QW_H)+(Qw+H)62QW>
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since €2?+(X) C D(Q,). And again we obtain that for w > wy the operator II,, is closed
and boundedly invertible.

Indeed, let w > wy. The operator II, can be written as follows
Hw - (Qw - H) (I - 62Qw) + 2Qw62Qw -
= (Qu—H) [T+2(Qu—H) " Que™ (1 — ) 7'| (1= ),

similarly to A, for w > ws we have

< 1.

|2(Qu = 1) Quer (1 - e2%) ™ .

Remark 4. We can use the fact that (Q, — H) and (Q,, + H) are invertible by writing

Ay = (Qu—H)+€%(Qu+ H) =
= (Qu—H)(Qu+H)" [+ (Qu+ H) (Qu—H)™' ] (Qu+H).
Due to (16), we have

1(Qu + H) (Qu = H) "¢ 1y < 1(@Qu + H) (Qu = H) ™l 1 1629 [ oy <

< HI +2HQS (I — HQZY) ™ o Koo 20,

and due to Lemma 1, for w > w; we get

J2m@ct (1 1@,y <21HQE g 0 - Q)7 <
- 1 2C" 1
< 2[HQ |, x, 1= [HQS Iz S 1o <’

moreover, for w > wo

2C 1
w'l— &

wV?

<1,

whence we deduce that A, is boundedly invertible. Similarly, for w > wg, we have

Hw = (Qw_H)"{'(Qw"’H)eQQW:
= [+ (Qut+H)e* (Qu—H)'] (Qu—H),

and similarly to A, for w > ws we obtain

1(Qu + H) €22 (Qu = H) ™| 1) =

= | rQry e (r-me) | <1

L(X)

Let us compare A, and II,. First we have D (A,) = D (II,)) = D (Q.,), moreover

My = Qu— H+(Qu+ H)e*¥ = A, — e (Qu+ H) + (Qu+ H) % =

— Ay — €2 H + He®@ = A, + [H; e (22)
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where, for all £ € D(H) = D (Q.)
[H;e*@] & = He*@¢ — P HE.

Then
I, = (I + [H;e®*] AL") A,

Using (20) and due to Lemma 1, for w > wy we have

1A iy = 110@u = H) gy 110+ ) oy T+ )™y <

1 1 1
< @Qu—H) " o, 1= Tolleo T = 1Sullzon —
< f@.-m7| 1 Lo«
- ) 1 - 721 e e Vel - Koe2eove =
w —Kge—<cov¥
) C
< Qu=H) ) < i

Due to (16), we get

HHe2QwA;1H£(X) = HHQJIHE(X) HQwemw(‘L‘(X) HA‘ZlHE(X) =

1
<O—Kje 2oV ___ <~
= CwyKle wl/2 = yrt1/2

In the other hand,
||€2QMHA;1H£(X) <

< e g 1 (@ = HY Ml 17+ T s 1T 520y <
< KooV ([H(Qu — H) ) < Ko % [|HQZ | || 1 - Q)| <

L(X)
< CFpe Ve L ! - < O L < ©
w’ 1 = | HQZ £ (x) w” T w”
Hence
10829 A gy < 5
) w LX) — v’
so there exists ws > wy such that for all w > w3 we have
<o
wl/
which confirm the invertibility of II,, whith
N = AL (I + [H; e A;l)_l. (23)
Similarly, due to (22), we obtain
ASY =TS0 (1= [H; e T (24)

Lemma 4. [10, Theorem, p. 96] Assume that (13) holds. Let p € |1, 4+o00[,¢ € X and
n € N*. Then, we have
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1. e%peLr(0,1,X),
2. QreQup e LP (0,1, X) if and only if o € (D(Q™),X) 1

np e

Lemma 5. Assume that (12) — (14) hold. Then for f € LP (0,1, X) with 1 < p < 400,

we have
X

1o =Lz, f)=Q, [e® 9% f(s)ds € LP(0,1,X),
0

2.0 L(1—x f(1—.)= wae(5‘$)QWf (s)ds € L? (0,1, X)

1
8.1 — L(x,f) =Q, [ @)% f(s)ds € L” (0,1, X),
0
1

4. Ofleswa(s)ds,fe(lS)Q“f(s)ds € (D(Qy), X)

. L

Proof. For statements 1, 2 and 3, see |3, 11, 12, pp. 167, 168|, and also |13, (24), (25)

and (26)]. Statement 4 is an easy consequence of statements 1 and 2, we proceed as in
T 1

Remark 1 by using the fact that z — [e@*)% f(s)ds and z — [ e*=)% f(s)ds belong
0 x

to WP (0,1, X)NLP (0,1, D (Q,)).

O
3. Representation of the Solution
Assume that (13) and (15) hold. Consider for a.e. = € (0, 1) the following formula
u (gj) = (erw _ e(Q—I)Qw) A;ld(] + 6<1_$)Q“’u1—|—
+Q51 (e — D) (Q, + H) AZ'Que%uy+
1
1
+§Q;1 (erw _ 6(2—96)%) (Qu + H) A;l / (GSQW _ 6(2_5)Qw) f(s)ds—
0
1 T 1
1 1 1
_56(1_$)QwQ;1 / G(I_S)wa (S) dS + 5@;1 /6(17_5)wa (S) dS + 5@;1 /G(S_I)wa (S) dS,
0 0 x

used in Cheggag et al |1| in the commutative case.

The main idea is in searching a solution u to (1), (2) for a.e. z € (0, 1), in the following
form:

_i_%le (erw _ 6(2—:1:)Qw) (Qw + H) A;l / (esQw _ 6(2—S)Qw) f* (8) ds—
0

(25)
1 @ 1
—%lee(lx)Q“ /e(ls)Q“f*(s) ds+% N /e(xs)Q“f*(s)ds+%Q;l /e(H)Q“f*(s) ds.
0 0 z
Taking into account the boundary conditions (2) deduce dj, uj and f*.
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It is easy to obtain
uy = u(l) = u. (26)

Now, from (25) for a.e. = € (0,1), we have

+ (e Q. + e=2)Q) (Q,, + H)A IQWeQWuhL

+% (e 4 €2=21Q0) (Q,, + H) A f( Qu  2-Q0) f* (5) dst (27)

1 1 11
—l—ée(l_l’)@w [ =900 f* (s) ds + 5 f e@=9)Cw £ (5) ds — 3 [ els=m)Cu £+ (5) ds,
0 0 T

and
u” (3;') = QE} (el’Qw _ e(z_m)Qw) A;lds + Qie(l_m)Qwul‘i‘

+Qw (erw _ e(?—iU)Qw) (Qw + H) A—leeQwu1+
1

+5Qu (€79 — e?7%) (Qu + H) A f( Qo — eBmI) f* (s) ds—
(28)

1 1
_iQwe(l—w)Qw f e(01=9)%w f* () ds + §Qw f e(r=9)Qu f (s) ds+
0 0

—l—%@w mj e(s=2)Qw f* (5) ds + f* ().
Since A, = —Q? and in virtue of (25), it is easy to see that
u” () + Agu(z) = f* (z),
therefore, for a.e. z € (0, 1), we deduce
fr(x) = f(x). (29)
Now, for dfj we have
w(0) = (I —e*) AJ s+ Qg [I+ (I — @) (Qu 4+ H) AJY] Que® ur+
PRI [T+ (1 - %) (Qu + H) AT Of (59 — =9 f (s) ds.
Note that
T+ (I—€%)(Qu+H)A' = [Ay+ Qo+ H — 2@ (Qw+H)} At =

= [Qu— H+e*(Qu+ H) + Qo+ H — e (Qu + H)| At = 2QuA",
1
w(0) = (I — @) A ds + 201 Que@euy + AL [ (€99 — e®79)@) f(s)ds.  (30)
0

In virtue of assumption (15) and due to Lemma 3, we deduce that u (0) € D(H). Applying
H to (30), we get

1
Hu(0) = H (I—€) A} dy+2HA} Queui+ HAY [ (39 —e@ @) f(s)ds.  (31)
0
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Using (27) for x = 0, we obtain
W (0) = Qu (I +€2@) Aty + [(I + eZQ“) (Qu + H)AZ' — I Que“ur+
+% [(I+€*) (Qu+ H)A' — 1] f (e5@w — e(279)Qw) f (5)ds.
0

On the other hand, we have

(I+e* ) (Qu+ H)AS' =1 =[Qu+H+ e (Qu+ H)— A A =
= [Qw+H+€2QM (Qw“‘H) - (Qw _H) _62Qw (Qw‘i‘Hﬂ A;1 = QHAu_Jl'

Then we get
W (0) = Qu (I +e2@) AJldy + 2HA, ' Queu+
+HAS! fl (e5Qw — e(279)Qw) f (s)ds. (32)
0
Therefore, using (31) and (32), we conclude that
u'(0) — Hu (0) = [Qu (I +€2%) — H (I — @) AJtdy = T, AL g = do.

Then, due to Remak 3 and (23), we obtain

ds = A1 dy = (1 + [H; 2] AZY) ™ do. (33)

Finally, inserting (33) into (25), from (26) and (29) we deduce that u is given formally by

u(z) = (€79 — M) AT (T4 [H; 2] A do+e)y 4
+Q,) (€@ =) (Q, +H) A2 Qe urt

+%Q;1 (ezQw _6(2—z)Qw) (Qu+H) A f ( $Qu _ (2—S)Qw) f(s)ds—
0

1 L 1 1
—5%16(“”)(9“ [ e f(s) ds+ = Ql fe #=5)Qu f(s) ds+§CTw1 [ el f(s) ds.

0

Note that if the commutativity hypothesis (7) is verified then the commutator [H;e??«]
becomes zero and then the representation formulas of solution (10) and (39) coincide.
Now we can write u as

u() = Sl('vd()aul) =+ SQ('aula f) + D(7 f) - R('7d07u17f)7 (34)

where, for a.e. x € (0,1)

Si(x,do, ur) = e* At (I + [H; %] A_l)_l do + el 7%y, (35)

w

So(x,ur, ) = Qte™@ (Qu + H) AS'Queu+

1 —1,zQ -1 : sQ, (2—5)Q (36)
+§Qwe “(Qu+ H) A f(e @ —e “) f(s)ds,
1 x
D(xz, f) = ——e(l 2)Qu =1 fe(l N9 f (s)ds + =Q" [ @) f (s) ds+
2770
(37)
+§Q; f e(s=)Qw f (s5) ds,
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and

R(z,do, uy, f) = eP QAT (I + [H;e®] ASY)
+e2=QuQ-1(Q,, + H) ASYQu e uy+
+;e(2 I)QwQ (QW+H A lf( $Quw

Yot

(38)
— (2790 f(s)ds.

On the other hand, due to (24), we have

U (x) — ( 2Qu __ (Q—m)Qw) H;1d0+e(1_m)Qwu1+
QT (@ — @) (Qu H) T (I— [H; €29 1) Qe urt
1
Q2 (=B ) Qur I (1= [H: I [ (% —eB9%) fs)dsr (39
1@1 (1=)Q ; ’
T

[ ) ds Qe () st 30 [ 16 s,
0
4. Main Result

Under assumptions (12) — (15) and (18), we focus on the study of the optimal regularity
of the strict solution given by (39).

Lemma 6. Assume that (13), (15) and (18) hold. For any ¢ € (D (Qu), X)1 ,, p € ]0,00]
and w = wsy, we have

(QuE H)A ' w € (D(Qu). X)L,

1
p7
Proof. We have a representation

(Qu+ H)AS' =2QuAS" + % (Qu+ H) A — 1,
which, by Lemma 3, can be written as follows
(Qu+H)AS =2Qu (Qu— H) (T + W)+ (Qu+ H) AL — 1,
where W(X) C | D(QF) C (D(Qu),X)
keN\{0}
Then, due to assumption (18)
(Qu+H)AS'p € (D(Qu), X)L,

On the other hand, we also have

ip
»P

, for any ¢ € (D(Qu),X)1,, we deduce that

(Qu—H)AS' =1 - (Qu+ H)A!
Thus, for any ¢ € (D (Qu), X) 1, we get (Qu — H)AS'0 € (D(Qu), X)s,
Lemma 7.

O
Assume that (13) and (15) hold. Let dy, u; € X, w = wy and f €
LP(0,1; X),1 < p < oo. Then

AwR('a dOa U, f) S Lp(o’ 17 X)
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Proof. Since A, = —Q2, )% = ¢Quell™)@w and e%¢ € M2, D (QF) for all £ € X,

w?
taking into account (38), the term

AWR(xa d07u15 f) = _Qwe(z_m)QwaA;1 (I -+ [H’ 62Qw] A;l)_l dO_
_Qwe(Q—a:)Qu (Qw + H) A;leeQwul_

40)
1 1 (
—§Qw6(2*x)QW (Qw + H) A;l f (esQw _ 6(275)Qw) f (s) ds = QweQwe(lfx)ng’
0
is bounded and thus belongs to LP(0,1; X),1 < p < oo for all £ € X.
O

Remark 5. As we have seen, the term R(-, do, u1, f) is regular, but this can not be applied
to the term e (Q, + H) A 'e®*Quuy in Sy (-, uy, f) since operators (Q, + H) A, and
e®« are not considered to be commutative.

Remark 6. Assume that (12) — (14) hold and f € L?(0,1; X) with 1 < p < oo. Then,
by using Lemma 5, we can easily see that

A,D(-, f) e L*(0,1; X),
see for instance [1].

Lemma 8. Assume that (12) — (15) hold and (18) and f € LP(0,1;X), 1 < p < oo.
Then, for all w > woy

AwSQ(')uhf) S Lp(0717X)a1 <p <oo.

Proof. Taking into account (36) and A, = —Q?, for a.e. x € (0,1) we can write

AwSQ(xa Uy, f) = _Qwerw (Qw + H) A(ZleQwaul -

1
Qe (Qut H)AS [ (9 = %) £ (s
0

Since
1

BQ“Qwul,/ (esQw _ 6(275)(%) f(s)ds € (D(Q.) ,X)%’p’
0
then, due to Lemmas 4 and 6, we deduce that

ASsy(., f) € LP(0,1,X),1 < p < oc.
O

Theorem 2. Assume that (12) — (15) and (18) hold. Let f € L? (0,1; X) with 1 < p < oo
and w = wsy. Then, the following assertions are equivalent

1. Problem (1), (2) has a unique strict solution u, that is
uw€ W (0,1; X)NLP(0,1;D(A), 1 <p< oo,

and u satisfies (1), (2).
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2. I;Ydy, uy € (D(A), X) 1, where

IL, = Q, — H+(Q, + H)e*?.

Proof. a) Let us begin with a uniqueness result. Let w, @ be strict solutions of (1), (2), then
v =u — u is a strict solution of

{ V() + Ayv(z) =0, a.e. xz€(0,1),
v'(0) — Hv(0) =0, v(1) =0.

Then v € C'([0,1]; X) and there exist 3o, 21 € D(Q,,) such that, for any z € [0,1]
v (z) = e*Qoyy + 17Dy
see Section 3, in [1]. Moreover, for any x € [0, 1]
v () = Que@yy — Qe ™% 2.

Note that v (0) = yo+ €92, € D (Q,)N D (H) and using the boundary conditions (2), we
get

v (0) — Hu (0) = (Quyo — Que“z1) — H (yo + €9 z1) =0,

v (1) = e%yg+ 2z = 0.

From z; = —e®y, we deduce

0= (Quyo + Que*@yo) — H (yo — e*@yp) =
= [Qu (I +€*@) — H (I — e*?)] yo = Iy,

and due to Remark 3, for all w > wy we get yo = 0 and then z; = 0. So, v = 0 and thus
U= u.

b) Consider u given by (39). Let us show that A,u € L?(0,1;X) with 1 < p <
oo. In fact, due to Lemmas 7 and 8 and from Remark (6), it is enough to prove that
A,S1(.,do,uy) € LP(0,1; X). From (35) for almost every « € (0, 1) one has

Awsl (x, d(), Ul) = _QierwHledO . Qie(l—x)Qwul'

From (17), we have uy € (D(Q2),X)1 , and thus, due to Lemma 4, statement 2 we get

2
Qie(lf')Q“ul € LP(0,1;X),1 <p < oc.
Using again Lemma 4, statement 2, we conclude that
ALSi(+, f) € LP(0,1; X)
if and only if
Q211 dy € L7(0,1; X),

and thus

I,y € (D(Q), X) 1, = (D(A), X) 2

i7p 550"
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5. Applications
In this section we give some applications for our abstract results.

Example 1. Let X = L%(]0, 1[). Consider operators Q,, and H in X, defined by

D(Qu) = D(H )—{SOGHQ(]OJD ¢ (0) =p(1) =0},
(Que) () = ¢" (y) +a(y) ¥ (v) — \/_90(> y €(0,1),
(Ho) (y) =—¢"(y), y€(0,1).

Suppose that a € C? ([0,1]) with a (0) = a (1) = 0 and w > 0 (large enough).

1. It is not difficult to prove that @, @, — H and H are boundedly invertible.
Therefore

{D(Qw_ H) ={p € H*(]0,1]) : ¢ 0)= (1) =0},
(Qu— H)¢ (y) = 20" (4) +a (y) "(y) —vwely), ye(0.1)

(see for instance Cheggag et al. in [3]).
2. By using A. Lunardi |5, Theorem 3.1.3, p. 73|, we obtain that the operator @), =
— (—Aw)l/ ? is well defined and generates an analytic semigroup. We also have

D(A,) = D(Q3) = {p € H'(J0,1])) : ¢"(0) =¢" (1) =¢(0) = (1) =0},
and

Avp (y) = =QLp (y) = =™ (y) — 2a (y) ¥ (y) — (a® (y) + 24/ (y) — 2v/w) " (y) —
—[a" (y) +a(y) (d (y) — 2vw)] ¢" (y) —we (y).
On the other hand, there exist conxtants 0, C' > 0 such that for z € S5 =
{z € C\ {0} : Jarg z| < 7/2+ 6} we have

B C
(A 2oy < NCEER

3. We obtain, for a.e. y € (0,1)

Yy 1
(H™) (y) = (1 —y) [ sv(s)ds +y [ (1 —s)(s)ds,
Jrowss
so that
(QuH0) (y) = Qu (H'4) () =
= (H')" (y) +aly) (HY) (y) — vV (H79) (),
then we get
1
(QuH) (5) = () — aly) Ofysws)ds +aly) [(1 - $)p(s)ds-
w (fy s)ds + fy (1-— 3)¢(s)ds> :
0 Y
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Indeed, we have

(H'Quv) (y) =H ‘11(Qw¢) (y) =
—(1-y) / 5 (Qu) (s)ds +y / (1= 8) (Quit) (s)ds =

Y
Y

=(1—y)/S@ZJ”(S)dS+/a(8)¢’(8)ds—\/5/yw(S)ds+
+y/(1—s)¢”(s)ds+/a(s)w’(s)ds—\/J/lw(s)ds:

=—w<y>+<1—y>/sa<s>w'<s>ds+y/<1—s)a(sw'(s)ds—

—Vw ((19)/8¢(8)d8+y/(18)¢(S)d8),

Y

and deduce that
VY € D(Qu), QuH "¢ # H'Qu1.

Therefore, all our assumptions are satisfied. We have the following:

Proposition 1. Let p € ]1,00[, f € LP(0,1; L*(]0,1[)) and

I, 'do, wy € (H*(]O, 1[),L2(]0,1[))ﬁ

where

I, = Q, — H+(Q, + H)e*@.
Then, there exists w* > 0 such that for all w > w* the problem

( 0%u 0*u o3u

G (0) = S )~ 2a() S5 e) — (6 () + 20 ()~ 28) 55 )~
~[a" () +a(y) (@ () = 2/0)) (o) — wiley) = f(o9), 2y € (01)

S0+ 550, A=, 3O
u(z,0) =u(x,1) = 0
0?u 0*u

—(x,0) = 1
| 5,0 = G 1) =
has a classical solution wu, that is
ue W (0,1; L*(J0,1[)) n L? (0,1; H*(J0,1])) , 1 < p < oo,

and w satisfies (41).
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ABCTPAKTHBIE 3AJAYN IIITYPMA-JINYBINJIJIA
AJ1d JNOPEPEHIINAJIBHBIX YPABHEHNN BTOPOTI'O ITIOPAKA
B HEKOMMYTATVBHOM CJIVHAE

Xend Mazomem', Xearadp Yavd Meaza
YVausepcenrer nmenn A6xyn Xavma 16n-Bamnca, . Moctaranem, Amknp

B crarbe 10Ka3bIBAIOTCS HEKOTOPBIE HOBBIE Pe3yabrarht o 3a7ade [ltypma — JlnyBuis
s audepeHIManbHBIX YPABHEHUH SJIMITAYECKOTO THITA BTOPOTO MOPSAIKA B HEKOMMY-
TATUBHOM Cjiyuae. VccienoBanue BbIIOJHEHO IPK yCJAOBUM, YTO BTOPOH Y/1€H IIPUHAIEIKIT
mpoctpanctBy CobomneBa. Jloka3aHO CymecTBOBaHWE, €IMHCTBEHHOCTD W ONMTHMAJIBHAS Pe-
TYJASPHOCTH CTPOrOro perienns. Pafora sBasgercs: MpoIoKeHNeM UCCASTOBAHUNT B KOMMY-
tarusHOM ciydae M. Yerara, A. ®apunu, P. Jlabbaca, C. Menro u A. Menerpu. B paGore
pPaCCMAaTPHUBAETCA IPAMED TPUIOKEHNS TOCTPOEHHON abCTPAKTHON TEOPHN.

Karoueene caosa: aasunmuneckoe duddepenyuarvroe ypasHerue 68mopozo nopaoka;
sadana HImypma — JIuysusis 6 HEKOMMYMAMUBHOM CAYHAE; AHAMSUTNUNECKAR NOAY2PYNNG;
MAKCUMAADHAA PE2YAAPHOCTD.
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