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Sobolev type equations theory has been an object of interest in recent years, with
much attention being devoted to deterministic equations and systems. Still, there are also
mathematical models containing random perturbation, such as white noise. A new concept
of "white noise", originally constructed for finite dimensional spaces, is extended here to
the case of infinite dimensional spaces. The main purpose is to develop stochastic higher-
order Sobolev type equations theory and provide some practical applications. The main
idea is to construct "noise" spaces using the Nelson—Gliklikh derivative. Abstract results
concerning initial-final problems for higher order Sobolev type equations are applied to the
Boussinesq-Love model with additive "white noise". We also use well-known methods in
the investigation of Sobolev type equations, such as the phase space method, which reduces
a singular equation to a regular one, as defined on some subspace of the initial space.

Keywords: Sobolev type equation; propagator; "white noise"; Wiener K-process;
multipoint initial-final problem.
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Introduction

Sobolev type equations make up a vast area of nonclassical equations of mathematical
physics. Their systematic study started in the middle of the twentieth century with the
seminal work of S.L.. Sobolev, though many such equations had been studied earlier on; we
recall, in particular, the famous Navier-Stokes equation system (see the excellent review
in [1]). Recently, there has been a major increase in the research of Sobolev type equations.
We should mention several monographs about these problems [2-7]. Different aspects of
the incomplete higher-order Sobolev type equations

Au™ = Bu + g, (1)

with the assumption ker A # {0}, have been studied [8-11|. Here the operators A, B €
L(4;§) (i-e. linear and continuous), & and § are Banach spaces, absolute term g = ¢(t)
models the external force, and n > 2 is a natural number. One of the prototypes of equation

(1) is (A= A)vy = alAv + g, (2)

which models, among others, the incompressible fluid free surface perturbation under the
assumption of motion potentiality and conservation of mass in a layer [12|, longitudinal
vibrations of an elastic rod [13] and wave processes in smectic and plasma [14].

The shortcoming of the model (2) with the deterministic absolute term is that in
natural experiments the system is exposed to random perturbation, for example in the form
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of white noise. Stochastic ordinary differential equations with different additive random
processes (i.e. not only white noise, but more general Markov and diffusion processes)
are now actively studied [15]. The traditional Tto-Stratonovich—Skorohod approach is the
most widely followed, although new and very promising avenues of research have recently
appeared [11,16].

The first results concerning stochastic Sobolev type equations of the first order can be
found in [17]. They are based on the extension of the Ito-Stratonovich-Skorokhod method
to partial differential equations (see, for example, [18-20]). In this paper, the stochastic
higher order Sobolev type equation

An™ = Bn+ Nw (3)

is considered. Here, w in the right hand side denotes the random process. It is required to
find the random process 7(t), satisfying (in some sense) equation (3) and the multipoint
initial-final conditions

Pi(n®(r;) — € =0, j=0,mk=0n—1, (4)

where 7; € R with 7; < 7j41, j = 0,m, £, k = 0,n — 1, are given random variables, and
P; are the relatively spectral projectors.

At first, w was understood as white noise, which is a generalized derivative of the
Wiener process. Later, a new approach to the investigation of equation (3) appeared [15]
and is being actively developed [16,21-23], where "white noise" means the Nelson—
Gliklikh [15, 24| derivative of the Wiener process. This "white noise" was first used in
optimal measurement theory [25,26], which constructs a special space of "noises". The
concept of "white noise" in this theory (that is, only in the finite dimensional spaces) proved
to be highly efficient, therefore suggesting to extend the concept to infinite-dimensional
spaces [17,27]. The main goal of this extension is to develop a theory of stochastic Sobolev
type equations and its applications to nonclassical models of mathematical physics of
practical importance [28].

Besides the introduction, the paper consists of three sections. The first one deals
with the deterministic inhomogeneous linear Sobolev type equation of higher order. We
define a multipoint initial-final problem and state a theorem on the existence of a unique
solution. We borrowed results from [10,29] and therefore give them without proofs. The
second section extends the deterministic results of the first one to the stochastic setup
by analogy with [23]; sketches of proofs complement the results. In the third section we
consider the linear stochastic Boussinesq-Love equation. In conclusion, we outline possible
directions for further research.

1. A Deterministic Linear Sobolev Type Equation of Higher Order
with Relatively p-Bounded Operators

Let 4 and § be separable Hilbert spaces, operators A, B € L(4;F). Following [18],
introduce an A-resolvent set

p(B)={neC: (ud—B)™ € LF:)

and an A-spectrum o4(B) = C\ p*(B) of operator B. The operator-functions (uA —
B)™', R}(B) = (hA— B)'A, L}(B) = A(pA — B)~" with the domain p*(B) are called
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the A-resolvent, the right and the left A-resolvents of operator B correspondingly. If the
set 0(B) is bounded (i.e. there exists a > 0 : |u| < a for all u € 0”(B)) then the operator
B is called (A, o)-bounded.

Let the operator B be (A, o)-bounded, p € {0} UN. Construct the set 02(B) = {1 €
C: u" € 04(B)}; it is compact in C due to the compactness of the A-spectrum of operator
B. Take the contour v = {u € C: |u| = r,r™ > a} that bounds the domain containing the
points of o2}(B) and construct the projectors

P [ BB e L), Q= [ L (B < L)

211 211
¥ ¥

Here, R7.(B) = (1"A — B)™'A and Lj.(B) = A(u"A — B)~'. Set U0(U') = ker P(imP),
FUFH) = ker Q(im@Q). Thus, the spaces 4 and § can be decomposed into direct sums
U= U and F = F° ® F', whereas 4° D ker A. By Ay(By) define the restriction of
operator A(B) onto U*, k =0, 1.

Lemma 1. [10] The operators Ay, By € L(U*; %),k = 0,1, moreover, there exist the
operators Byt € L(F%U°) and At € L(FHUb).

Construct the operators H = By 'Ag € L(U°), S = A['B; € L(UY).

The (A,o)-bounded operator B is called (A,p)-bounded, p € {0} UN, if 0o is a
removable singular point (i.e. H = O,p = 0) or a pole of order p € N (i.e. H? # O,
HP™ = Q) of the A-resolvent (uA — B)~! of operator B.

Introduce the following condition:

o(B) = LmJ aj‘(B), for m € N; moreover, af(B) # 0, ’
there exisg;(; closed contour~y; C C, bounding a domain (A)
D; D 0(B), such that D; Nog(B) =0 and
D,ND; =0 forall j k,l=1,m with k # L.

Then we have

Lemma 2. [10] If the operator B is (A, 0)-bounded and condition (A) is fulfilled then
(1) there exist relatively spectral projectors

1 . o
Pi=o— | 'RO.(B)dp € L), j=Tm,
Vi
1 n—17A . T -
X’
Vi
Moreover,
(i) PiP = PP = P, Q;Q = QQ; = Qj;
(iii) PP, = PP, = O for all k, | = T,m with k # 1.
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Put Py = P — ZP € L), Qo=0Q — ZQJ € L(§). Due to Lemma 3 operators
7j=1

Py, Qg are prOJectors. Moreover, P;Py = PyP; = O, Q;Qo = Qo®@; = O for j =1, m.

Thus, assume that condition (A) is fulfilled. Fix 7; € R with 7; < 7,44, vectors u; € 4l
for j = 0,m, and vector-function f € C*(R;§F). Consider the linear inhomogeneous
Sobolev type equation

Au™ = Bu + f. (5)

Refer to a vector-function u € C®(R;4) satisfying (5) as a solution to (5). Refer to
a solution u = u(t) to (5) satisfying the conditions

Pj(u®(r)) —uf)y =0, j=0,m, k=0,n—1, (6)

as a solution to the multipoint initial-final value problem (6) for (5).
Introduce the following operator families

UK®) = 5 [ 1 A - By e

2mi
k=0,1,....n—1, 7=1,....m

Lemma 3. [10] If the operator B is (A, p)-bounded and condition (A) is fulfilled then
(i) Uf(t) k=0,1,...,n—1, 5 = 1,...,m are propagators of homogeneous (f =0)
equation (5);

(i) (UEE)\ = UFUE) for k=0,1,....n =1, 5 =0,1,...,m, 1 =0,1,....k;
(iii) (UF( t))l - 0—@f07’k7él
(i) (UF(1)" = b

Introduce the subspaces UY = im P; and §7 = im Q; for j = 0, m. By construction,
4 =PuY and F =PH3Y.
j=0 §=0
Denote by A;; the restriction of A to U and by Bj; the restriction of B to 4 for j = 0, m.

Theorem 1. [29] (generalized spectral theorem) Suppose that A,B € L(;F), the
operator B is (A, o)-bounded, and condition (A) is satisfied then

(i) Arj € L(UY;FY) and Bij € L(UY;5Y) for j =0,m;

(ii) the operators Ay € L(FY;4M) eist, for j =0, m.

Theorem 2. [10] If the operator B is (A p)-bounded for p € {0} UN and condition (A)
holds then for all f € CP"™™(R;§) and uf € U, for j = 0,m, k =0,n—1, there exists a
unique solution to (5), (6) given by

u(t) = = 3 HOB; (1= Q) f ™0+

m n—1 m L (7)
k k n—1 -1
+ E E Ui (t —7j)uj + E /Uj (t —s)A; Q;f(s)ds
i=0 k=0 =0
J 7=0 7
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2. A Stochastic Linear Sobolev Type Equation of Higher Order
with Relatively p-Bounded Operators

For a real separable Hilbert space 4 = (4, (-, -)), take an operator K € L(4l) whose
spectrum o(K) is nonnegative, discrete, finite, and accumulates only to zero. Denote by
{A;} the sequence of eigenvalues of K enumerated in the non-increasing order taking into
account the multiplicities. The linear span of the set {¢;} of corresponding orthonormal
eigenfunctions of K is dense in 4. Assume also that K is a nuclear operator, that is, its
trace Tr K = > \; < 4o0.

j=1

Take a sequence {n;} of independent stochastic processes n; : 2 x Z — R, a complete
probability space €2, and an interval Z C R. Equip R with the Borel o-algebra. Assume
that the random variables 7;(w,t) € Ly are Gaussian for all w € A and t € Z, where A is
a o-algebra on Q. In addition, the sample trajectory n;(w,-) is almost surely continuous,
that is, 7; € CLy (for a detailed description of the spaces C'Ly for [ € {0} UN, see [23]).
Define the U-valued stochastic K-process

= Z VA (t)e; (8)

assuming that series (8) converges uniformly on every compact subset of Z. Observe that
if {n;} C CL; then the existence of a stochastic K-process Ok implies that its trajectories
are almost surely (a.s.) continuous. Introduce the Nelson—Gliklikh derivatives

(l) Z \/_ 77(1) (9)

of the stochastic K-process assuming that the derivatives in the right-hand side up
to order [ exist and all series converge uniformly on every compact subset of Z. (For
a detailed description of the Nelson—Gliklikh derivative, see [15,23]). Introduce [23] the
space of differentiable "noises” Cl Lo of stochastic K-processes whose trajectories are a.s.
continuously differentiable on Z in the sense of Nelson—Gliklikh up to order [ € {0} UN.

As an example, let us present "black noise", a stochastic K-process whose trajectories
a.s. coincide with zero (that is, absolute silence), as well as "white noise"

WK(t) = ot (10)

which is the Nelson—Gliklikh derivative of the Wiener K-process
=Y VNBi(Dws R
j=1
Here 3; = f3;(t) is the Brownian motion of the form

1 —
ijksm + ) t, te R,
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where ;i are pairwise independent Gaussian random variables such that E;, = 0 and

m(2k+1)]7° ,

D¢, = [% , that is, & € Lo.
Having considered the deterministic equation (5) in the previous section, we now
proceed to the stochastic equation (3). Assume that the operator B is (A, p)-bounded,
with p € {0} UN, and condition (A) is satisfied. Consider the linear stochastic Sobolev

type equation
o(n)
AN = Bn+ Nuw, (11)

where 1 = n(t) is the required stochastic K-process, 7%(”) is its Nelson—Gliklikh derivative
of the n-th order, w = w(t) is a known stochastic K-process, and the operator N is defined
below.

Take 79 = 0 and 7; € Ry with 751 < 7; for j = 1,m. Complement (11) with the
multipoint initial-final conditions

o (k) _
Pi(n (1) —&)=0, j=0,m, k=0,n—1

(12)

where P; are the relatively spectral projectors from Lemma 3. In view of (10), we also
have to consider the weak (in the sense of S. Krein) multipoint initial-final conditions

lim P(n™ (t) = &) =0, P(n®(r)) =€) =0, j=Tm, k=0n—1.  (13)

t—=T10+

Here

(14)

&= VM&or, j=0m, k=0,n—1
=1

% € Ly is a Gaussian random variable such that series (14) converges. (For instance
i € N, j=0m, k=0,n—1). Call a stochastic K-process n € C%kLy
a (classical) solution to (11) whenever a.s. all its trajectories satisfy (11) for some stochastic
K-process w € CkLs, some operator N € L(U; F), and all t € Z. (Here and henceforth
Z = (0,400)). Call a solution n = n(t) to (11) a (classical) solution to problem (11), (12)

(problem (11), (13)) whenever in addition condition (12) (condition (13)) is satisfied.

Theorem 3. For p € {0} UN take an (A, p)-bounded operator B and assume that
condition (A) holds. Given 1; € Ry for j = 1,m, an operator N € L(4;F), a nuclear
operator K € L() with real spectrum o(K), a stochastic K-process w = w(t) such
that (I — Q)Nw € C’]’?JF”LQ and QNw € CgLs, and random variables 5}“ € Loy, for
7=0,mk=0,n—1, such that (14) is fulfilled, there exists a unique solution n € C%Ly
to problem (11), (12) given by

p
n(t) ==Y H'By' (I — Q) w™(t)+
q=0
m n—1 t (15)
-I—Z Z Uf(t - Tj)ﬁf + /U;‘_l(t — )AL Qu(s)ds |, tel.

j=0 | k=0 .

J
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Let us sketch the proof. It is straight forward to verify that (17) is a solution to problem
(11), (12). To establish the uniqueness, reduce the problem to the equivalent system

o(”) o(k) J—
An =Bn, P;n (r;)=0,j=0m, k=0,n—1.

By Theorem 1 the first equation here is equivalent to the system
H(")™ =, (7)) = s, (16)

where n° = (I — P)n and n* = Pn. Taking now the n-th Nelson—-Gliklikh derivative of the
first equation and acting on the left by H we obtain in succession

0= Hp+1(7%0)(np+n) e H2(%0)(2n) - = H(%O)(n) _ 770'
By Theorem 2 and the initial-final conditions (12), the second equation of (16) yields
m n—1
=> ) Uk(t—7)0=0.
=0 k=0

In view of (10), problem (11), (12) is not solvable when the right-hand side of (11) is

the "white noise" w(t) —Wk (t). In this case instead of conditions (12) we should consider
conditions (13).

Corollary 1. If all conditions of Theorem & hold and w(t) :VCf/K (t) then, for random
variables ff € Ly given by (14) there exists a unique solution to problem (11), (13) given

by

ZHqB I1-Q )W (an+1) (1) +
q=0
m -1
+ Z (t = 7)€ — Uy~ H(t — 75) Ay QN Wi (1) + (17)
=0

+f Ur2(t — $) AL Q;NWi(s)ds| , teT.

The proof of Corollary 1 is similar to that of Theorem 3. The difference in the additive
terms is caused by an application of integration "by parts",

t

/ Ut — $)ALIQUN Wi (s)ds =

7j

t
—UP Nt — 1) A QiNWi (1j) + [ U2 (t — 8) AL QN Wi (s)ds,

Tj

which follows from the properties of the Nelson—Gliklikh derivative.
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3. The Multipoint Initial-Final Problem for the Stochastic
Boussinesq—Love Equation with Additive "White Noise"

Let D C R? be a bounded domain with the boundary 0D of class C*°. Fix [ € {0} UN
and set § = WD), 4 = {u € Wi(D) : u(x) = 0,z € 9D}. Obviously, i is a real
separable Hilbert space densely and continuously embedded in §.

Let {v;} be the sequence of eigenvalues of the Laplace operator with homogenous
Dirichlet boundary conditions, numbered in nondecreasing order according to multiplicity,
and by {¢;} denote the set of corresponding eigenfunctions, orthonormal in the sense of
5.

Introduce the U-valued random  K-processes. Construct the operator
A = (=1)™'A™ with domain domA = {Wi"™ (D) : Aky(z) = 0,2 € D,k =
0,1,..,m—1},m € N. Note that the operator A has the same eigenfunctions {¢;}, as the
Laplace operator, but its spectrum consists of eigenvalues |v;|™. Since their asymptotic
lvj|™ ~ j% = 00,j — oo, we consider such number m € N for a fixed d € N that the

oo
series Y |v;|7™ converges (in particular m = d). Then the operator A is continuously
j=1
invertible on i, whereas the inverse operator (i.e. the Green operator) has a spectrum
consisting of eigenvalues \; = |v;|7™. We take that very operator as the nuclear operator
K and consider the Wiener K-process

Wr(t)= D VBt

JViFEA
In the cylinder D x [0,T], T € R, consider the Dirichlet problem
E(x,t) =0, (x,t) €0D x[0,T] (18)
for the equation
(A= Ay) Eu= aldué+ Wi . (19)
Put A=X—-A,,B=alA,,N=1L
Lemma 4. [10] For all « € Ry, A € R the operator B is (A, 0)-bounded.

In order to state initial-final conditions, we need relatively spectral projectors. In this
example for the sake of simplicity we confine to three initial-final conditions. First of all
present the projectors

Iu (Ig) if A 7& v; for allj S N,

P(Q) =
R D STOT AP P S

)\:l/j A:l/j

Furthermore, choose hy, hy € R, such that hy < hy and the sets o4'(B) = {u; € c(B) :
il < M}, 0(B) = {u; € 0(B)  hy < |uy| < ho}, and 03/(B) = {u; € 04(B) « || >
hy} are not empty; hence, of'(B) Not(B) Noi(B) = () and condition (A) holds.
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Construct the projectors

Pr=Tg— > (odgen Bo=Tu— > (.09

h1<|uj|§h2 h2<‘lij|
Q=I5 — Z <’790j>5 pj, Q2 =15 — Z () 901)8 Pjs (20)
hi<|p;|<hs ha<|p;|

Ph=P—-P— P, Qy=0Q—Q1— Qs
Finally, choose 71 € (0,7") as well as random variables &, & and & independent of each

other and of stochastic K-processes I/i)/ x and pose the initial-final conditions
lim P, — =
Jim Fo(n (t) = &) = 0,

(21)
Pi(n(m) — &) =0, P(n(T) — &) =

where
=) VAiboigi, &= V&upi, &=V Aikaipi. (22)
i=1 i1 i1

Applying the results of Section 2 to problem (18), (19), (21), we obtain the following
theorem.

Theorem 4. For all numbers A € R, a« € R\ {0} and 7 € (0,7T), as well as random
variables o, &1; and o such that DE;; < Cj fori € N, j=0,1,2 for some C; € Ry there
exists a unique solution n =n(t), for t € Ry, to problem (18), (19), (21) given by
n(t) = =By (I- Q) Wi (1) + Ug ()& + Ug ()& +
t

+ [ UB(e = ) A QuWi(s)ds + Ut = )68 + ULt - m)éi-

~UL(t — 1) A QWi (1) + /U?(t —5) AL QWi (s)ds+ (23)
+UP(t = T)& + Us(t - )52 Uy (t = T) Ay QoW (T)+

—i—/U2 (t — 5) Ay QWi (s)ds, t € R,.
T

Here |
Bil=—Y"¢(
0 a\ Z < ) Spk’>90k7
V=M
(09%4% (09%4%
U(t) = : h t : — ¢
o (t) ZA (-, r)prc . + ZA (*, r) ok cos D\
p € 07 (B), pu € 05 (B),
A< vy A >
Ul (t): A— Vk Z Vi—
0 PP \/ )\—Vk « S PP \/ U\
Hk 6 oy (B € 05 (B)
A< vy )\ > Vg
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A = Y, (A =w) enen

pr€cd(B)
QU avy
Up(t) = > (-, ¢r)prch . th + > (- ) x cos o b
i € oA(B), i € oA(B),
A< g A >y
A—
Ul (t)= Ok / V""Sh1 / )\_th—l— Z IR \/ sm A = Y t,
i 6 oi( Hr € ‘714(3
A< vy A >y
A=) O—w) e ene,
Hk60'1 (B)
vy QUg
Uy (t) = > (-, ¢r)prch - th + > (- ) px cos o b
ju € 03(B), pux € 03'(B),
A< v A >y
A=V, V=N . av
Uy (t)= PR PRy ksh,/)\_yktJr ( or)ery (:Vk Smw/,,k_k)\t?
Mk E 0-2 )7
A<y )\ > Vg
Ay = Z A = )7 on) e
pr€od (B)
Conclusion

The next stage of our studies is to spread the ideas and the developed methods of
the theory of multipoint initial-final problems for linear Sobolev type equations of higher
order from the relatively p-bounded to the relatively (n,p)-sectorial case and to the case
of complete higher order Sobolev type equations with initial-final conditions. In addition,
it would be interesting to apply these ideas to inverse problems for Sobolev type equations
of higher order.
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MHOTOTOYEYHA I HAUAJTLHO-KOHEYHA {1 3AJTAUA
TIJIS OJTHOT'O KJIACCA MOJEJIEVI COBOJIEBCKOI'O TUIIA
BBICOKOT'O IIOPIIKA C AJJNTUBHBIM <BEJIBIM IITYMOM >

I'A. Ceupudiox', A.A. Bamvwnaesa', C.A. 3azpebunal
OxH0- Y paabeKuit ToCyIapcTBeHHbBIH YEUBEPCHTET, T. e Ia0mHCK,
Poccuiickas Pejiepariust

Teopusa ypasuenunit Cobonena ObLTa MpeIMEeTOM HHTEpPECa MHOIHX HCCIEI0BATENEH Mo-
CJIeHUE TOIBI, IPA 3TOM MHOTO BHUMAHWS YIEISIOCH NETePMUHUPOBAHHBIM YDABHEHUSIM
u cucreMaMm. TeM He MeHee, CYMIECTBYIOT TaKyKe MATEMATUYECKHUE MOJEIH, COMEPIKAIINEe
caydaiiHble BO3MYINEHUsI, Takue Kak Oesbril mrym. HoBas kormemnmust <6emoro mymas, mep-
BOHAYAIBHO TIOCTPOCHHAS JJIs KOHEYHOMEPHBIX TPOCTPAHCTB, B JAHHON paboTe pacupocrpa-
HSIETCS Ha Caydail 0eCKOHETYHOMEPHBIX MpocTpancTB. (CHOBHAsS I€/Ih 3aKJOYAETCH B
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pa3paboOTKe CTOXACTHYECKOH TeOpHH ypaBHEHHiI COOOJIEBCKOIO THIIA BBICOKOI'O HMOPSIKA M
[IPEIOCTABJIEHUY HEKOTOPBIX HPAKTHYeCKUX Lpuioxkennii. OCHOBHAs UJesi COCTOUT B TOM,
9TOOBI TOCTPOUTH MPOCTPAHCTBA <IITyMOB>, UCIOAb3ys mpou3Boauyio Hembcona — [muk-
Juxa. AGCTpaKTHBIE PE3yIbTATHI, KACAIONNECS HAYAIBHO-KOHEUHBIX 33124 JIJIs yPABHEHI
CODOIEBCKOIO THUIA BBICOKOTO MOPSKA, TPUMEHSIIOTCA K MATeMaTHIecKoit mogenu Byccu-
Hecka — JIgBa ¢ aIIUTUBHBIM <OeJIbIM IITyMOM>>. Vcmoabp30BaH TaKo# W3BECTHBINH METO, TE€O-
pun ypaBHeHUi cODOJIEBCKOIO THIIA, KAK MeToH, (Pa30BOro IPOCTPAHCTBA, 3aK/I0YAOIIUACS
B PEIYKIWY CUHTYJISPHOTO YPABHEHUS K PETYJIsIPDHOMY, ONPEIeJIEHHOMY Ha HEKOTOPOM TOI-
TIPOCTPAHCTBE HCXOTHOTO MIPOCTPAHCTBA, MTOHUMAEMOM Kak (Ppa30BOe MPOCTPAHCTBO.

Karoueevie caosa: ypasHernue coboae6CKo20 MUNG; NPONG2amop; <6eivill wWyms; 6UuHe-
posckuti K -npouece; MHo20moneuHaa HAGUGADHO-KOHEYHAA 36004a.

Cmamova swnosnena npu noddepocke Ilpasumesvemsa PO (Hocmanosaernue Ne 211

om 16.03.2013 2.), coeaawenue N 02.A03.21.0011.
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