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The article is devoted to the study of the morphology of the phase space of a
mathematical model of the nerve impulse spread in a membrane, based on a degenerate
Fitz Hugh—Nagumo system, defined on a bounded domain with a smooth boundary. In
this mathematical model, the rate of change of one of the components of the system can
significantly exceed the other, which leads to a degenerate Fitz Hugh—Nagumo system.
The model under inquiry belongs to a wide class of semilinear Sobolev type models. To
research the problem of nonuniqueness of solutions of the Showalter—Sidorov problem, the
phase space method will be used, which was developed by G.A. Sviridyuk to scrutinize the
solvability of Sobolev type equations. We have shown that the phase space of the studied
model contains singularity such as the Whitney fold. The conditions of existence, uniqueness
or multiplicity of solutions of the Showalter—Sidorov problem depending on the parameters
of the system are found.
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Introduction

An important part of the development of modern biophysics is the study of
mathematical models of processes in living nature. Processes such as blood clotting, nerve
impulse spreading, cardiac muscle contraction can be modelled using the Fitz Hugh-
Nagumo system of equations [1,2]:

3

€10 = Vs + 1w — Ky, (1)
€W = QWss + SoW — KoU — W,

where parameters oy, ag, 1, k1 € Ry, fa, ko € R, €1,62 > 0. System (1), on the one
hand, is the development of the classical Kolmogorov—Petrovsky—Piskunov model, and
on the other hand, some simplified version of the Hodgkin-Huxley model, which plays a
significant role in the theory of nerve conduction. However, the majority of researchers
considered the system of equations (1) under the assumption of €, ey # 0 [3,4]. At the
same time, cases of degenerate systems (¢; = 0 or € = 0) remained poorly understood,
the necessity of studying of which is connected with the fact that the rate of change
of one of the components of system (1) can significantly exceed another one. In case of
€, = 0, the phase space of the system is a simple Banach C°°-manifold, therefore, the
problem has a unique solution. The question of the solvability of the Showalter—Sidorov—
Dirichlet problem for Fitz Hugh-Nagumo system (1) in the case €; = 0 was considered in
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papers |5,6], it was also studied their optimal control, start control and final observations
for this system. In this article, we will be interested in case of e = 0. In this case, the
phase space of system of equations (1) contains singularity of Whitney fold type [7], which
leads to nonuniqueness of solutions.

Consider degenerate system of equations (1) in case €3 = 0 in cylinder @ = Q x R,
where 2 C R” is a bounded domain with boundary 0f2 of class C*:

v = QqUss + Brw — Ky,
{ Ot: QaWss + Bow — Kov — w3 v=wu(s,t),w=w(s1), (2)

with boundary value conditions
v(s,t) =0, w(s,t) =0, (s,t) € 02 x Ry, (3)

and initial value condition

v(0) = vy. (4)

Problem (2) — (4) can be investigated within the framework of abstract Showalter—Sidorov
problem

L(u(0) —up) =0 (5)
for semilinear Sobolev type equation
Li = Mu+ N(u), ker L # {0} (6)

in specially constructed function spaces. Here L € L(I, F), M € CI(4;F), N is nonlinear
operator, i, § are Banach spaces. By the phase space of equation (6) we mean the
closure of the set of all admissible initial values, for which there is a local solution to
problem (5), (6) [8]. So, based on the theory of (L, p)-bounded operators or (L, p)-sectorial
operators, G.A. Sviridyuk, and later his adherers [9,10], found the conditions for the unique
solvability of problem (5), (6). Namely, when the operator M is (L, p)-sectorial (bounded)
and the phase space of equation (6) is a simple Banach C'*°-manifold, there is a single
quasistationary the (semi)trajectory of problem (5), (6) passing through point ug, which
lies pointwise in phase space [11]. Recall that Banach C'*°-manifold is called simple if any
of its atlas is equivalent to an atlas containing a single chart. In particular, if operator
M is (L,0)-sectorial (bounded), then any solution (5), (6) will be a quasistationary
(semi)trajectory. The main method for studying problem (2) — (4) is the phase space
method. Following it, we construct set 9 = {u € & : (I — Q)(Mu + N(u)) = 0}, then all
solutions of problem (1), (3) lie in set 9 as trajectories, where @) is spectral projector [11].

Back in 1987, G.A. Sviridyuk suggested that the solution to problem (5), (6) may not
be unique if phase space of equation (6) is not simple Banach C*°-manifold. In review [12] it
was shown that initial value condition (5) for (6) can have several solutions in cases where
phase space of (6) lies on smooth Banach manifold having singularities such as Whitney
folds. For example, the Showalter—Sidorov problem for the Korpusov-Pletner—Sveshnikov
equation may have two different solutions [13], and for the system of Plotnikov equations
— three [14]. In work [7] it was shown that in degenerate case (for e; = 0) phase space of
(2) contains singularity such as Whitney folds, therefore, it can have one or more solutions
or the solution may not exist. In the course of this study, we will identify the conditions
for the existence and uniqueness or multiplicity of solutions of Showalter—Sidorov problem
(4) for Fitz Hugh—Nagumo system (2) depending on the parameters of the system.
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1. The Morphology of Phase Space

Let Q C R™ be a bounded domain with boundary 02 of class C*°. In cylinder ) =
1 x R, we consider system of equations (2) with boundary value conditions (3) and initial
value condition (4). We set $); = W3 (Q), i = 1,2 and define space

= 9H1 X Hy = Wy (Q) x Wy(Q).

Let vector functions u = (v, w),( = (§,n), consider Hilbert space H = Lo(£2) X Ly(2) with
scalar product

[u> C]H = <’U>€>ﬁ1 + <w777>ﬁ27

and space Uy = Ly(Q) x Ly(Q). By U = F we denote the space adjoint to $) with respect
to duality of [+, ] in H. By virtue of the Sobolev embedding Theorems there are dense and

continuous embeddings
Ho Uy > H o Uy > U=F. (7)

Note that space H is identified with its adjoint. Construct linear operators L, M 3l — §
[Lu, ] = (0,€), u,C € 8L,
[Mu, (] = —a(vs,, &, ) — aalws,, ns,), u, ¢ € U, where dom M = §
and nonlinear operator

[N(u), (] = (Biw — k1v,&) + (Bow — kav — w?, 7)), where dom N = $ly.

(Note that the FEinstein agreement on summation over repeated indices is fulfilled
everywhere.) By construction, operator L € L(U,§), M € Cl(L;F).
Denote by
U =ker L = {0} x W, H(Q), 4* = W, 1(Q) x {0},

F'=imL=WwW;4Q) x {0}, §° = MU’ n dom]\/[] = {0} x W, (%),
when 4 = 2 U, §F = F° @ F'. Set Ly as the restriction of operator L to U', then
Lyt e L£(Fhub).

Lemma 1. For any oy, a0 € Ry, By, 0, k1, ke € R, n < 4
(i) the operator M is (L,0)-sectorial;
(ii) N € CH(hy; Uy).

Proof. (i) (L,0)-sectoriality operator M was shown inwork [14].
(i) We show that N € C*(Lhy; 4%, where 4% is dual space of iy with respect to duality
of [-,-]. Indeed, due to Holder inequality, we have

I[N (u), I < (Cullulldy, + Collully )G sy

[[NoC1, Gol| = ‘f(ﬂl&fz — r&i&e)ds + f Bamine — Kkamine — 3w?ning)ds| <

< (Csllulfy, + C4) - HQHuN [ICallsty

where constants C; € Ry ,i = 1,4, depend neither on u, nor on ¢, (;,(s. Here N is the

Frechet derivative of operator N at point u. The inclusion of N € C*(8y; %) is proved.
O
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Thus, we reduced problem (2), (3) to a semilinear equation of Sobolev type (6). Note
that condition (4) takes form (5). We are interested in the solvability of problem (2) — (4)
for any ug = (vg, wo) € 9.

Let {v} denote the sequence of eigenvalues of the following spectral problem:

—Ap =vyp, s €, (8)
o(s) =0, s € 08,

where eigenvalues are numbered in nondecreasing order of their multiplicity. Denote by

{¢r} the corresponding eigenfunctions orthonormal in the sense of scalar product (-,-) in
Ly(92).

Definition 1. Vector-function u € C1((0,7); 4)NC((0, 7); Uhy), satisfying equation (2), is
called the solution of the equation. Solution u = u(t) of equation (2) is called the solution

of problem (2), (4) if
lim [[L(u(t) — uo)lls = 0.

t—0+

1
M = {u €EN: —<U,7]> = <—i—zw+ K—2w3,77> + <:_jwsi7778i>}

and note that all solutions of system of equations (2) satisfying boundary value conditions
(3) will lie in this set.

Build

Lemma 2. Let ag, ko € Ry, By € (0, a01y), n < 4, then for any vector v € $); there erists
unique vector w € $y such that u = col(v,w) € M.

Proof. Construct an auxiliary operator

R2 R2

1 «
(A(w),n) = <——w + —w3,n> + <H—2w5i,nsi> , w,n € $Ha, dom A = $o.
2
Denote by $; the space conjugate to £, with respect to duality of (-, -). Insofar as

[(A(wy), wa)| < Cr(J|wilg, + [Jwi][3,)] w5,

where constant C; € Ry depends on (s, k2, as and embedding constants (7) and does not
depend on w, thus the action of operator A : $H2 — H5 is proved. Note that operator
A Hy — 9 is coercive, i.e.

llwl] 54 —+00 llwllsy =00

: <f(w§i + w2)ds) E = +o00.

Q

lim  (A(w),w)||w]]s) = lim <§{(_%w2 — 22 (w,,)? + éw‘l)ds) :

In addition, operator A is strictly monotone, that is,

(A(w1) — A(wa), w1 — wa) = g];(—f—i(wl —wy)? — 2 (wy,, — wy, )*+

7

as soon as w; # wy. Finally, we show the smoothness of operator A. Indeed,
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, 1
(A& m)| = I/ ——775 - —ns §si + —23w2?7§)d81 < (Cr+ Collwl[3,)] [l [1€] |52

where constants Cp,Cy depend only on «s, 32, ko and the nesting constants. Hence, by
virtue of the Vishik—Minty—Browder Theorem [15], equation A(w) = —v has a unique
solution.

O

Consider the case of 5y = anrq, put
O ={v" €1 (wh ) =0}, H; ={w" €N (w", ) =0}

Let v; be a single root and ¢ be an eigenfunction of problem (8), corresponding to the
eigenvalue of vy, normalized in sense Ly(Q2). If v € H; and w € Hy be represented as
v=vt+rpand w=w + qp, where r, ¢ € R, then set 9 takes the following form:

—vt = =2yt — 2 Apt + L (w4 gp)ipds,
Q

K2

M=queh: —ror = [(wh + qp)3pds. (9)
Q

Lemma 3. Let ay, ko € Ry, B2 = aovy, n < 4, then for any vector vt € $H1 there exists
unique vector wt € 95 such that

1
vt = @wl + —=Awt — — [ (w' + qp)3pds.
K9 K9 Ko

D)

The proof of this lemma is carried out similarly to the proof of Lemma 2, if we consider
the following operator as an auxiliary operator:

— 1
A(wh) = ﬂuﬁ ~ ZAwt 4 = (wh + qp)’pds.
R2 K2 K2
Q
By Lemma 3 by ’Ué‘ and 7y, we construct wol and qg. Put vy = ’Ud‘ + rop and wy =
wi + qotp, then ug = (vg, wp) € M.

Theorem 1. Let as, ks € Ry, n < 4, By € (0,a011), or Bo = ocorn, ¢llelll, +
2q [whpdds + [(wh)?p* # 0, then the set M at the point ug is a simple Banach C™-
Q

Q
manifold.
The second equation of system (9) can be represented as:
¢*llel ) + 3¢° /wﬂo‘gds + 3q/(wL)2g02ds +/go(wL)3ds +Kker =0.  (10)
Q Q 0

The equation (10) is a cubic equation of general form ag® + bg? + c¢* + d = 0 with respect
to q. According to Cardano formulas, any cubic equation of general form with the help of
replacement ¢ = y — % can be reduced to canonical form 3® + py + e = 0 with coefficients

a = ||90||i4(9)a b= 3/wl903d3, c= 3/(wL)2902d8, d= /QO(wL)gds — Ko,

Q Q Q
3ac — b 1L/20°  be d 5 o
P:W*f:a(ﬁ‘@m)?@:p e
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the

By virtue of the already mentioned Cardano formulas, Theorem 1 and Theorem on
existence of a solution of problem (5), (6) [8,10] is valid.

Theorem 2. For any ug = (vg, wp) € H, n < 4, s, ky € Ry and
(1) B2 € (0, az11) there exists a unique solution to problem (2) — (4);

(i)

Pa = vy, Q > 0 there exists a unique solution to problem (2) — (4);

(7ii) Po = vy, Q = 0 and following condition is fulfilled

Pllellt o + 20 / whds + / (wh)g? = 0
Q Q

there exists two solutions to problem (2) — (4);
(iv) B2 = asry, @Q < 0 there exists three solutions to problem (2) — (4).
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O HEEIVMHCTBEHHOCTU PEIITEHUIT 3AJAYN ITIOYVOJITEPA —
CUIOPOBA JIJISI OTHOM MATEMATUYECKOM MOIEJIN
PACITPOCTPAHEHUN A HEPBHOI'O NIMIIVJIbBCA B MEMBPAHE

H.A. Manaxosa', O.B. I'nspunosa'
NOxm0-Ypanbekuii rocyIapcTBenHbIH YHIBEPCHTeT, T. e a0nHCK,
Poccniickast @enepariust

Crarbsa mocBgaiena u3y4uernto Mopdosorun $ha3oBOro MPOCTPAHCTBA MATEMATHIECKON
MO/JIEJIN PACIPOCTPAHEHNsI HEPBHOI'O UMITYJIbCA B MeMOpDaHe, OCHOBAHHON HA BBIPOZKIEHHON
cucreme ypasaennit @uri; Xbio — Harymo, 3amanHoil Ha orpanutdeHHON objacTu ¢ riiaf-
Koi rpanutieit. B naHHONl MaTreMaTudecKo# MOJIeN CKOPOCTh U3MEHEHUsT OJHON U3 KOMIIO-
HEHT CHCTEMbI MOYKET 3HAYUTETHHO IIPEBOCXOAUTD APYTYIO, YTO MPUBOIUT K BBIPOXKIEHHOMN
cucreme ypasuennit ®urii Xsi0o — Harymo. H3ydaemas Momenb OTHOCHTCA K ITHPOKOMY
KJIACCY IMOJIYJIUHEHHBIX MOzeseli coboseBcKOro tumna. s ucciaenoBaHus BOIPOCA HEEINH-
creennocTu permennit 3amaun [[loyonrepa — Cumoposa 6ymer ucnoab30Ban MeTo I (ha30BOro
MPOCTPAHCTBA, KOTOPBIH ObLT paspaboran [LA. CBUPUIIOKOM JIJIsI HCCIETOBAHUS PA3PEIH-
MOCTHU ypaBHeHHU cobosieBckoro Tuna. Hamu Oymer mokasano, yTo (a3oBoe MpOCTPAHCTBO
HCCIIEYEMOI MOMIENN COJEPAKUT OCOOEHHOCTH THUIA CKJIAIKW Y UTHHU U BBISBIIEHBI YCIOBUSI
CyIIIeCTBOBAHMS, €IMHCTBEHHOCTH WJIM MHOXKECTBEHHOCTH pernennii 3amagu [lloyosrepa —
Cu10poBa B 3aBUCHUMOCTH OT [IAPAMETPOB CHCTEMBI.

Karoneswie caosa: ypasnenus coboaesckozo muna; 3adawa Illoyoamepa — Cudoposa;

cucmema ypasuenut Pumy Xorw — Haeymo; needuncmeennocms pewsenud.
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