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The present paper addresses the problem of adaptive estimation of a moving
object trajectory and detection of changes in the motion mode. It is supposed that an
object moves along a complex trajectory and at known discrete-time instants it may
change its motion to one of three possible modes: a uniform straight line motion or a
uniform anticlockwise/clockwise circular motion. We propose a new algorithm for adaptive
trajectory estimation that combines a hybrid linear stochastic model of an object trajectory
with a bank of competitive Kalman filters and a decision rule based on a sequential
hypothesis testing. A detailed description of the decision rule and pseudocode of the
proposed algorithm are given. The software implementation of the algorithm is made in
Matlab. A numerical example of adaptive estimation of the motion of an object along a
complex trajectory consisting of nine different pieces is considered. We have conducted
computational experiments with different levels of noise in the measurements. The results
confirm the effectiveness of the proposed algorithm.

Keywords: adaptive estimation; moving object; sequential hypothesis testing.

Introduction

In this paper, we consider the problem of simultaneous adaptive estimation of a
moving object trajectory and detection of changes in the motion mode which is typical for
example, for mobile robots [1| or marine vessels [2]. This problem belongs to the class of
tracking problems, which are currently of great interest due to their important practical
applications.

The estimation of the position and velocity of a maneuvering object has been
researched in literature for many decades, see [3]. The well-known approach for solving
this problem is the multiple-model (MM) tracking technique. Following [3|, the multiple
model or hybrid system approach assumes that the system is described by one out of a
finite number of models. The known basic approaches to the multiple-model tracking are
the static MM estimator, the Dynamic MM Estimator, the GPB1 MM Estimator, the
GPB2 MM Estimator, the interacting MM estimator. These algorithms are decision-free,
i.e. they do not detect the motion mode, and require to calculate all estimates for each
possible model along the whole trajectory.

We suggest replacing a complex and usually nonlinear model of an object movement
with a set of linear models for which optimal discrete Kalman filtering may be applied. But
to obtain optimal estimates of the object state which allow to track and predict the object
movement there is a need to detect changes quickly in the motion mode. The purpose of
this paper is to provide the algorithm which efficiently solves this problem. To describe a
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moving object trajectory we use a hybrid stochastic linear model proposed in [4] in which
separate pieces of the complex trajectory are described by models of one of three possible
motion modes: a uniform straight line motion, a uniform anticlockwise circular motion
and a uniform clockwise circular motion with a given radius.

Let us suppose that the moments of changes in the motion mode are known. The
main idea of the algorithm is to apply at each of these moments the sequential probability
ratio test (SPRT) [5] to choose from one of three possible motion modes. The proposed
algorithm of adaptive estimation was implemented in MATLAB and proved its efficiency
over the set of numerical experiments.

1. Moving Object Trajectory Model

Suppose that the trajectory of an object can be divided into separate pieces on
which the movement of the object can be represented using one of the discrete linear
stochastic models, each of which describes either a uniform straight line motion or a
uniform anticlockwise/clockwise circular motion (left turn/right turn) with a given radius.
Then the motion of an object on the entire trajectory is described by the hybrid stochastic
model

rp = Qi1 + B; + kafl, 1 E Z, (1)

where k is a discrete-time moment, 4 is a motion mode number; x = |11, xo, 3, z4]7 € R*
is a vector of the object motion parameters, in which x; is a coordinate of the object along
axis Oz (m), x5 is velocity v, along axis Oz (m/s), x3 is a coordinate of the object along
axis Oy (m), x4 is velocity v, along the axis Oy (m/s). The detailed description of the
model (1) matrices can be found in [4]. The proposed hybrid model allows modelling a
complex trajectory of the object movement using the algorithm described in [4].
Assuming that only coordinates x; and x3 are measured (velocities xo and x4 are
not measured), the measurement model is written as z; = Haxy + v, where H is the
corresponding measurements matrix, v is the coordinates measurement errors, which
is a Gaussian white noise with zero mean and a diagonal noise covariance matrix

R = diag[p1, pa].

2. Algorithm for Adaptive Estimation

Consider three hypotheses about the modes of the object motion:

1) Hp is an object performs a uniform straight line motion; 2) H; is an object performs a
uniform anticlockwise circular motion with a given radius (left turn); 3) H, is an object
performs a uniform clockwise circular motion with a given radius (right turn) and three
Kalman competitive filters Fy, F} and F, designed, correspondingly, under the assumption
of hypothesis Ho, H; and Hs. To evaluate likelihood ratios Ay ;; (k is a moment of time,
i, j are hypotheses numbers) we use sequential probability ratio test (SPRT) [5], and to
select the optimal filter we use the decision rule described in [6].

The outline of the proposed algorithm in the form of pseudo-code is presented by
Algorithm 1. The input data for the algorithm are: xy is an initial estimate of the state
vector, r is a rotation radius, 7 is a discrete-time step, T is a list of lengths of trajectory
pieces, «, [ are error levels for the decision rule.
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Algorithm. ATE (Adaptive Trajectory Estimation)
INPUT: zg, 7, 7, T, a0, 5.
OUTPUT: the estimated trajectory X.
COMPUTATION.
A= ln%, B = ln%
k=1, :=x9, P:=1, qa :=0, prevMoment := 1
fori:=1,... size(T)
nextMoment == k + T
isChanged := false
Lip = {0,1,2}
F := setFilters(z, P,r,7)
while (k < nextMoment) && not(isChanged)
9. [%,P,N,X] := makeStep(z;, F,14p)
10. z2:=%,,,P =P
1. Xy :=2
12. A := calculateLambda(IN, 3, T45, qa)
13.  [isChanged, qa,14p] := makeDecision(A,I45,qa)
4. k:=k+1
15. end while
16. if (isChanged)
17.  for j := prevMoment, ... k —1
18.  [#, P] := makeStep(z;, F, {qa})

e R N

20. end for
21. end if

22. for j:=k,..., nextMoment — 1
23. [z, P] := makeStep(z;, F,{qa})
24, X; =14

25. end for

26. k:=nextMoment

27. prevMoment := nextMoment
28. P:=1

29. end for

Algorithm starts by calculating upper and lower thresholds A and B for the decision
rule (line 1). Then current time k, estimate Z of state vector z, covariance matrix P and
index of current filter ¢4 are initialized (line 2). After that algorithm iterates through all
trajectory pieces trying to find changes in the motion mode at the beginning of each piece.
Note, that £ = 1 is also considered as the potential moment of change.

Let us consider each iteration of the main loop (lines 3-29) in more detail. At the
beginning of each iteration, the next moment of the potential change is calculated, variable
isChanged and the set of working filters I45 are initialized. Then the function setFilters()
is called which returns the bank of Kalman filters F = (Fj, [}, F») all of which are active.
After that algorithm iterates in while loop (lines 8-15) until it finds the change in the
motion mode or the next moment of the potential change is reached. At each iteration
of this loop function makeStep() is called (line 9) which performs one step of Kalman
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filtering procedure for each working filter and current measurement z;, and returns sets of
estimates X, residuals N, covariance matrices P and X for these filters. Current estimate
Z of the state vector and its covariance matrix P on each iteration are set to X,, and P,
respectively. After that, the likelihood ratios are calculated and the decision rule is applied
(line 12). The function makeDecision() updates the set of working filters at each iteration
and returns the new index g4 of the current filter if it finds the change in the motion
mode. If the change in the motion mode is found then the algorithm first recalculates
estimates from the beginning of the current trajectory piece up to the current moment
of time (lines 16-21) and then iterates up to the end of the trajectory piece if it is not
yet reached with current filter F,, (lines 22-25) producing estimates & and covariance
matrices P otherwise it continues with the next trajectory piece.

The main novelty of this algorithm compared to the one proposed in [6] is that state
estimates are recalculated with the filter corresponding to the selected hypothesis (lines 16—
21). This allows obtaining more accurate state estimates.

3. Numerical Experiments

We would like to substantiate the new adaptive estimation algorithm proposed in
Section 2 in practice. For that, we consider the next example.

Example 1. A moving object trajectory is defined by the following scheme: (S, 250),
(R, 314, 5), (S, 250), (L, 314, 5), (S, 250), (L, 314, 5), (S, 250), (L, 314, 5), (S, 250) where
(S, 250) means straight motion for 250 discrete-time moments and (R /L, 314, 5) means the
turn to the right /left for 314 discrete-time moments with radius 5. So, the whole trajectory
consists of 9 pieces and the total time of motion is 2506 discrete-time moments. We need
to estimate the parameters of the object motion.

First, we have obtained model data of measuring the coordinates of the object as it
moves along a given trajectory. We have simulated measurements data for 100 different
trajectories using MATLAB. Initial state vector is zo = [0, 0, 0, 0,25]7. The covariance
matrix of the object noise is () = 0. Consider three levels of uncertainty:

1) R = diag[0,01, 0,01], 2) R = diag[0,1, 0,1], 3) R = diag][l, 1]. (2)

We have performed the following set of numerical experiments. The object motion
model (1) is simulated for £ = 1,...,2506 to generate the “exact” state, Zezaet(tr),
and available measurements, z;. Next, the adaptive estimation problem is solved by the
proposed algorithm, i. e. we perform the trajectory parameters tracking for estimating
unknown state vector Z. The experiment is repeated for 100 times and then RMSE (the
root mean square error) in each component of the state vector is calculated as follows:

M N , . .
RMSE,, = \/ﬁ 211;1 (xfk - fcgvk)Q, where M = 100, N = 2506, the z], and #;, are
o

the ith entry of the “true” state vector (simulated) and its estimated value obtained in the
jth experiment, respectively. Together with the RMSE,., the normalized RMSE (nRMSE)
(i.e. ||RMSE,||2) for each level of uncertainty are shown in Table.

Fig. 1 shows the obtained results of modelling and adaptive estimation of a
moving object trajectory given in example 1 for the third level of uncertainty (2). The
measurements are indicated by grey dots, the calculated estimates of object coordinates
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Table
The RMSE in Example 1, M = 100 runs
Level RMSE,, nRMSE
X1 T2 T3 Ty

1) | 0,2273 10,0404 0,2038 0,0377 | 0,3103
2) 10,2926 0,0449 0,2399 0,0408 | 0,3832
3) 10,3791 0,0575 0,3440 0,0568 | 0,5182
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Fig. 1. Adaptive estimation of a moving Fig. 2. Mode detection process
object trajectory

are coloured according to detected motion mode: straight motion is painted in red, left
turn is painted in blue, and the right turn is painted in green.

Fig. 2 shows a mode detection process for Example 1 given the third level of
uncertainty (2). The calculated values of likelihood ratios Ay ;; are coloured according
to the corresponding motion mode: straight motion mode is painted in red, left turn mode
is painted in blue, and right turn mode is painted in green. We can see which motion mode
has been detected on each piece of the trajectory.

Having analyzed the obtained numerical results presented in Table and illustrated in
Figure, we make a few conclusions. First, for each component of the state vector = the
quality of calculated estimates is good (RMSE,,, i = 1,...,4 is small enough). Second, the
motion modes were detected correctly in all three considered cases, even when the level of
the measurements noise is high enough.

Thus, the proposed Algorithm (ATE) of adaptive estimating moving object trajectory
allows to detect correctly the motion mode and simultaneously calculate optimal linear
estimates of the state vector x. Therefore, it can be recommended for solving practical
tracking problems in real-life applications.

Conclusions

In the present paper, a new algorithm ATE for adaptive estimation of a moving object
trajectory is proposed. The novelty of this algorithm is that it combines the hybrid linear
stochastic model of an object moving along a complex trajectory with Kalman filtering and
a sequential hypothesis testing. It is supposed that at known moments of time an object
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may change its motion to one of three possible modes. Such an approach may be used, for
example for ground and marine objects tracking. The proposed algorithm was implemented
in MATLAB and its efficiency was confirmed by multiple numerical experiments. Further,
it will be extended to the general case when moments of changes in the motion mode are
unknown.
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AJAIITUBHOE OHEHNBAHUNE TPAEKTOPUN ABUV2KVIIIETI'OCA
OB'BEKTA C UCIIOJIb3OBAHNEM IIOCJIEZIOBATEJIBHOI'O
TECTUPOBAHUNS I'MITIOTE3

A.B. IIweanos', I0.B. Iweanosa®, A.B. I'oaybxros', H.0. ITempuues
VWnbanosckuit rocyapersennbii negarornaeckuit yausepeurer nv. VL.H. Vibsanosa,
r. YabgaHoBcK, Poccuiickas Penepariust
2V bAHOBCKI TOCYIAPCTBEHHLIH YHIBEPCUTET, I. YIbanoscK, Poccuiickas Penepanns

B crarbe paccmaTpuBaeTcs 3a/1a9a aIAIITHBHOTO OIEHUBAHUST TPAEKTOPHUH JBUKY IIIET0-
cst 0ObeKTa M OOHAPYKEHUsI M3MEHEeHUs] PeXKUMa JIBU2KeHusi. [Ipeoiaraercsi, 9ro 00beKT
JIBUZKETCS 110 CJIOXKHOM TPAEKTOPUU U B M3BECTHBIE MOMEHTHI BDEMEHH MOYKET IIPOMCXO/IUTH
[IEPEKJII0UEHIe PEeXKUMa, JIBI2KEHUsI O0bEKTa Ha OJINH U3 TPEX BO3MOXKHBIX PEXKUMOB: PaB-
HOMEPHOE IPSIMOJINHEHHOE JIBUKEeHIE W1 PABHOMEDHOE JIBUKEHNe IIPOTUB UJIU 110 YaCOBO
crpenke. PazpaboTad HOBBIIT aJrOpuTM, OCHOBAHHBIN Ha COUETAHNN TMOPUIHON JTUHEHHOM
CTOXaCTUYIECKON MOJIe/In JIBUKeHUsi 00beKTa, OaHKe KOHKYypupyoomux ¢uibTpos Kajamana

1 permaroiieM IMpaBujie Ha OCHOBE IIOCJIEJOBATE/ILHOIO TECTUPOBAHUA T'HIIOTEI. HpI/IBe,ZLeHO
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JIETAJIbHOE OIICAHNE PEIIAIOIIero MpaBimia U IPeJIOKEHHOTO aJITOPUTMa B BHUJIE IICEBIOKO-
na. IIporpamMmvuast peasn3aliist aIropuTMa BBITIOHEHa Ha a3bike Matlab. PacemoTpen wuc-
JIEHHBII TIPUMED aJAlNTUBHOTO OIEHUBAHUS JBUXKEHUsT OObEKTa TI0 CJIOKHOU TPAEKTOPUH,
COCTOSIINEl U3 JIEBATU PA3IUIHBIX yIaCTKOB. [[poBeieHbl BBIUYNCINTEIbHBIE SKCIIEPUMEHTHI
C Pa3/IMIHBIMU YPOBHSIMU IIOMEX B M3MepeHusixX. 11ojrydeHHbIe pe3yJIbTaThl [TOITBEPKIAIOT
3¢ HEKTUBHOCTD MTPEJJIOKEHHOIO AJITOPUTMA..

Karouesvie crosa: adanmusnoe ouyenusanue; 0sustcyuuiicsa obsexm; nocaedogamenvroe
MECMUPOBAHUE 2UNOMES.

Paboma swvnoanena npu noddepocke PODU (npoexmuv 16-41-730784, 18-37-00220).
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