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The article contains results in the field of spectral problems for mathematical models
with discrete semi-bounded operator. The theory is based on linear formulas for calculating
the eigenvalues of a discrete operator. The main idea is to reduce spectral problem to
the Fredholm integral equation of the first kind. A computationally efficient numerical
method for solving inverse spectral problems is developed. The method is based on the
Galerkin method for discrete semi-bounded operators. This method allows to reconstruct
the coefficient functions of boundary value problems with a high accuracy. The results
obtained in the article are applicable to the study of problems for differential operators of
any order. The results of a numerical solution of the inverse spectral problem for a fourth-
order perturbed differential operator are presented. We study some mathematical models
of continuum mechanics based on spectral problems for a discrete semi-bounded operator.
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Introduction

Let
Q={z=(r1,29,...,2n5):0<2;<a;,j=1,...,N}, a; >0

be a N-dimensional parallelepiped with lateral surface I'. Let L is a discrete semibounded
operator on separable Hilbert space H with domain Ls[(2]. Consider spectral problem

Lu = pu, u € Ly[Q],
Gu| =0.
r

We assume that the properties of some functions included in operator L are known but
their functional dependencies are not. Let us also know the eigenvalues of operator L
belonging to segment [c, d]. We set the following inverse spectral problem: to restore the
functions included in operator L in case, when eigenvalues {p }}_, of operator L belonging
to segment [¢, d] are known.

Today we know quite a few methods for solving the inverse spectral problem. The
detailed description of these methods and their applicability can be found in review [43].
Let us dwell only on the method not mentioned in this review, later called the method of
reqularized traces. This method formed the basis for many of the studies mentioned later in
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this article. The ideas of the method were first formulated in the work of V.A. Sadovnichii
and V.V. Dubrovskii [34]. Later, in articles [8,9] the theoretical justification of the method
was given applied to inverse spectral problems for the perturbed Laplace operator. The
theory of inverse problems for the Laplace operator with potential were further developed
in works of V.A. Sadovnichii, V.V. Dubrovskii and their students [11, 12, 35, 36]. For
example, in article [38] there were developed the algorithms of the approximate solution
of the inverse spectral problem generated by the perturbed degree of Laplace operator.
The inverse problem for perturbed degree 8 > 3/2 of Laplace operator was solved [39].
In [13] the inverse problem for degree 5 > N/2 of the Laplace operator was considered.
In articles [47, 48| the inverse spectral problem for mathematical models with fractional
degree of Laplace operator was considered.

The method of regularized traces formed the basis for studies of spectral problems
carried out by S.I. Kadchenko. In [17] the method was developed that allows to calculate
the eigenvalues of discrete semi-bounded operators of form T+ P. Here T is discrete
semibounded operator and P is restricted operator, given in separable Hilbert space H. The
main idea of the method is as follows. Let eigenvalues {\,}%_, of operator 7', numbered
in non-decreasing order of their values taking into account the algebraic multiplicity, and
orthonormal eigenfunctions {v,}>2; of operator T' corresponding to A, be known. Denote
by v, multiplicity of eigenvalue \,, and by ng thﬁ\ num‘t;elr| of all unequal eigenvalues of

_ |Ang+1tAng

An, which are lie inside circle ¢, of radius p,, = —*=5—% centered in the origin of the

complex plane. Let {u,}5°, are the eigenvalues of operator 7"+ P, numbered in non-
decreasing order of their real parts. If for all n € N inequalities ¢, = % < 1 are

satisfied then {u,}\%, can be calculated by formulas
Mn:)‘n+(Pvnuvn)+gl(n)7 n = 1,my, (]->

where for 4;(n) the estimates are valid

q2

1—

no
01l < @n = Dpug—r, 7= maxga, mo= Z;vn.
n—
It is worth noting that all of the above results are fair when there are some restrictions
on the norm of perturbing operator P. So, equations (1) are obtained under the condition

HPH < 075|/\n+yn - An|, Vn - N

This narrows down the class of problems to which the results can be applied. For research
of applied problems it is necessary to develop such methods of analytical and numerical
study of inverse spectral problems that would allow us to solve problems not tied to
specific types of operators, and construct their solution for a sufficiently wide class of
discrete semi-bounded operators. The development of such research methods will allow to
conduct the study not only of existing problems, within the directions, but also of new
problems described by differential or integro-differential equations.

In addition to the introductory part and the list of references, the article contains six
paragraphs. The first section is devoted to finding eigenvalues of discrete semibounded
operators. The second section provides a method for solving inverse spectral problems
generated by discrete semibounded operators, which is based on the formulas obtained in
the first paragraph. In the third paragraph the inverse spectral problem for the Sturm—
Liouville operator generated by a fourth order differential equation is considered. In the
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fourth and fifth paragraphs, all abstract results are illustrated by concrete examples. The
sixth section is devoted to the review of applications of inverse spectral problems.

Abstract methods developed by the author are applied to research of the following
mathematical models:

1. Mathematical Model of Longitudinal Vibrations of the Rod with Variable
Cross-Section
Equation
Pu 0 ou
"o~ ox (EFax> @)
with some homogeneous boundary conditions, describes the longitudinal or torsional
vibrations of an elastic rod with a variable cross section. Here m = m(x) is the mass
of the rod length unit; m = p; p = p(z) is the material density distributed along the
rod; £ = E(x) is the Young module; F' = F(x) is the cross-sectional area of the rod.
Inverse spectral problems for the mathematical model of elastic rod oscillations in various

formulations were considered in [1,4, 31].
2. Mathematical Model of Antiplane Vibrations of Elastic Layer
Antiplasma fluctuations of the elastic layer is described by following boundary problem
0 Ny
u

1
ﬁa (3)

V24 + - 2UV(@) +

S

Q| =y
Q=

Uy|.=0 = Uyl =0, (4)

where @ = (u,, uy, u,) is a displacement vector, H = const is a layer thickness, © = V4,
(x,y, z) is Cartesian coordinate system, F= (Fy, F,, F.) is volume force, G = const is a
shear modulus, o is Poisson’s ratio, p(z) is a material density.

All mathematical models discussed above can be reduced to an operator equation of

form
Lu = iu, (5)

where L is a discrete lower semibounded operator in separable Hilbert space H. The study
of these mathematical models is carried out in the framework of the following inverse
spectral problem for equation (5). Let approximate eigenvalues {fix}}_; of operator L be
known. It is necessary to restore operator L using its known eigenvalues.

1. Computation of Eigenvalues of Discrete Lower Semibounded
Operators by Modified Galerkin Method

Definition 1. Operator L acting in separable Hilbert space H is called discrete if there
exists some complex number Ny such that Ry, = (L — \oE)™" is a completely continuous
operator in H.

Definition 2. Operator L is called semibounded from below (on top), if there exists such
real number c, that inequality

(LE )z el ) (L) S el )
is satisfied for all f € dom L.
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Consider discrete semibounded operator L given in separable Hilbert space H with
dom L C H. Denote by I" the boundary of dom L. If L is a differential operator, eigenvalues
i are determined by finding nontrivial solutions of equation

Lu = pu, (6)
that satisfy homogeneous boundary conditions
Gulr = 0. (7)

To calculate them, we use the Galerkin method. We introduce sequence {H,,}>° , of finite-
dimensional spaces H,, C H, which is full in H. Let the orthonormal basis of space H,, be
known and consist of functions {¢}7_;. Functions ¢, must satisfy boundary conditions
(7). Following the Galerkin method, the approximate solution of the spectral problem (6),
(7) is found as

n

Up = Zakz(n)@k' (8)

k=1

(L—=AE)p = (n—Ag (9)
for discrete operator L, there exists resolvent operator Ry(L) = (L — AE)™!, which is
completely continuous at H. Acting left on both parts of equation (8) with R, (L) operator,

we get
¢ = (1= A)R\(L)ep.

Based on [18] the Galerkin method applied to the problem of finding eigenvalues of the
equation (9), a hence, equations (6) converges. Thus, the statements are fair

Write equation (6) as

Theorem 1. [18] Let L be a discrete semibounded from below operator acting in a separable
Hilbert space H. If the system of coordinate functions {¢i}e, is a basis in space H, then
the Galerkin method applied to the problem of finding the eigenvalues of spectral problem
(6), (7), constructed on this system of functions, converges.

Theorem 2. [18] Let L be a discrete semibounded from below operator acting in separable
Hilbert space H. If the system of coordinate functions {¢x}32 is an orthonormal basis of
H, then approzimate eigenvalues ji,, of operatorL can be found by

ﬁn(n) = (Ln; pn) + 0n, (1())
n—1

where 6, = >_ [ (n—1) =k (n)], fn(n) are n-th Galerkin approzimations to corresponding
k=1

eigenvalues (i, of operator L.

If operator L can be represented as L = T + P, where T is a discrete semibounded
operator and P is a bounded operator in H, then operator L = T+ P is also discrete
semibounded in H. Therefore, if coordinate function system {p,}32; in Theorem 2 consists
of orthonormal eigenfunctions vy of operator 7' and satisfies boundary conditions (7), then
for discrete semibounded operator L = T + P formula (10) will take form (1). But in this
case, it is not necessary to impose any restrictions on the norm of operator P.

Remark 1. Linear formulas (1) and (10) for calculating eigenvalues p, of L = T + P
operator are obtained on the basis of the regularized trace method and the Galerkin

o 2||P

method. When conditions ¢, = _ 2P < 1 for Vn € N are met then (1) and (10)
. ‘)‘n-i-vn - /\n|

are equivalent.
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Theorem 3. Let L be discrete semibounded from below operator acting in separable Hilbert
space H. If the system of coordinate functions {¢r}32, is an orthonormal basis in H, then
the Galerkin method in application to the problem of finding eigenvalues of spectral problem
Lu = pu, built on this system of functions, converges.

N.A. Polskiy introduced the so-called (A)-condition, or Polskiy condition of
convergence of projective methods. He also noted that for a positive operator this condition
in the Galerkin method is automatically. Thus, under the conditions of Theorem 2 and on
the basis of the results of [26-28|, the eigenvalues of (9) can be obtained as limits of their
own elements. Therefore, we have a result

Theorem 4. If L is a discrete semibounded operator acting in separable Hilbert space H,
then there exists a unique solution of the problem of finding the eigenvalues of operator L.
Approximate values of eigenvalues can be found by the Galerkin method.

If fix(n) is the n-th approximate eigenvalue for k-th eigenvalue of py, of operator L is
found using Galerkin method, then, on the basis of Theorem 2 and 3 have

le fr(n) = ug, k€ N. (11)

Since for any k € N lim (fig(n — 1) — fig(n)) = 0, for any k € N and for any € > 0 there
n—oo

exists number N, for all n > N, that inequalities are hold:

Then

3

DCAEREADIEDY )

H
7
A
i
A
|~
[N}
[N}

B
Il

Here ¥(1,n) is a polygamma function. Therefore, lim 4, = 0. Thus, the next Theorem

n—oo
holds.

Theorem 5. Let L be a discrete semibounded operator acting in separable Hilbert space
H. If the system of coordinate functions {@g}32, is orthonormal basis H and satisfies
the homogeneous boundary conditions of spectral problem (6), (7), then the limit of the
sequence of numbers 6, included in formulas (10) at n — oo is equal to zero

lim 6, = 0. (12)

n—oo

Formulas (10) allow us to find approximate values of discrete semibounded operators
eigenvalues with a high computational efficiency. In contrast to the classical methods of
computing the eigenvalues for discrete semibounded operators formulas (10) have several
advantages: they drastically reduce the number of computations; solve the problem of
finding eigenvalues of matrices of high order; allow us to find the eigenvalues of regardless
of whether the eigenvalues with smaller numbers are known or not; solve the problem of
calculating all the required points of the spectrum of the discrete semibounded operators.
All of the above significantly increases the computational efficiency of (10) formulas
compared to the classical Galerkin method.
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2. Solution of Inverse Spectral Problems Generated by Perturbed
Self-Adjoint Operators

Using linear formulas (10) obtained on the basis of the Galerkin method, we construct a
numerical method for solving inverse spectral problems generated by discrete semibounded
operators.

Let operator L in equation (6) be in form

L=T+P,

where T' is a self-adjoint operator and P is a bounded operator of multiplication by function
p(s), s € [a,b] in separable Hilbert space La(a,b). Assume that eigenvalues {\;}32, and
orthonormal eigenfunctions {py}72, of operator T' are known. Consider the problem of
restoring potential P by eigenvalues {p}}_; of operator T'+ P in space Ls(a,b).

Using (10), we construct an integral Fredholm equation of the first kind

/ K(z, 8)p(s)ds = f(z), C <z <d, (13)

where functions f(z) and K(z,s) are such that

b
(o) = e — A — / T(pr(s)en(s)ds + 0y, K(zk,s) = ¢jp(s), c<ap <d, k=1n.

If kernel K(x,s) of integral equation (13) is continuous and closed in rectangle II =
[a,b] X [¢,d] and p(s) € W (a,b) and f(x) € La(c,d), then as it is known, the solution of
equation (13) is unique. Based on the function definition f(z), its values at points z;, are
known approximately. Denote through f(xk) approximate values of function f(zy) such
that ||f(zx) — f(ze)|| < &, Var € [c,d]. This estimate is used in the preparation of the
algorithm of numerical solution of the problem.

Finding the solution of Fredholm integral equation of the first kind (13) is an ill-posed
problem. The approximate solution p(s) can be found using the Tikhonov regularization.
Numerical solution of equation (13) will determine an approximation p(s) of function p(s)
at nodal points s;, i = 1,1, a = 51 < S3 < ... < s; = b. To get good accuracy at
interpolation functions p(s), the number of node points [ it is possible to choose large
enough. Segment [c, d] is chosen as follows, to find the accuracy of eigenvalues i, found
by formulas (10) belonging to this segment, met the specified requirements. Thus, using
formula (10) managed to construct integral equation (13), which solution allows you to
find approximate values p(s) operator p(s) at node points s; of discretizations of segment
[a, b].

The developed method formed the basis of the numerical method of solution inverse
spectral problems for discrete semibounded operators and set out in works of [19,20]. It
should be noted that the method described above allows us to recover discrete semibounded
operator L in boundary value problem (6), (7) in case when L is a differential expression
of form

Lu = po(s)u'™ + pr(s)u™ 4 ...+ pu(s)u. (14)

Here n is an order of differential operation.
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3. Inverse Spectral Problem for the Sturm-Liouville Operator
Generated by Fourth Order Differential Equation

To illustrate that the modified Galerkin method is applicable to the operators of a high
order, we consider the spectral problem generated by the operator of the Sturm—Liouville
problem of the fourth order

uwlV + py(s)u = pu, 0<s<1, (15)
u(0) =4'(0) =0, wu(l)=1u/(1)=0.
Function p4(s) is twice differentiable in L(0,1). Let us compare the results of numerical
calculations of eigenvalues of spectral problem (15), found by modified Galerkin method
by formulas (10) and Galerkin method. For the system of coordinate functions {¢x(s)}7i_;
in the Galerkin method, we take the eigenfunctions of spectral problem

QOIV — )\(P,
0(0)=¢'(0) =0, (1)=¢'(1)=0, (16)

which, as it is not difficult to show are following

o(s) = Cu{ shlae(1 = )] + sinfae(1 — )] — ch(ges) sin gy

(17)
+ ch(gp) sin(grs) + sh(qis) cos(ar) — shiar) cos(ars) }, k =T, .
Numbers g are the roots of transcendental equation
1—chgcosq=0. (18)
The eigenvalues of spectral problem (16) are calculated by formulas
M =qi, k=100 (19)
In the Table we give approximate Table
eigenvalues {ux}i2, of spectral problem
(15), found by formulas (10), and by I \ s 7 — Tl
the Galerkin method in the case when K Hi Hi = Hk
_ 2 o
pas) = 8"+ s 44 —sinfs) + cos(3s). A = 500, 6 504,9 | 1,7538- 107
feature of the spectral problems under s
consideration (15), (16) is a sharp increase 2 3803, 5 3807, 97 1,1298 - 10 6
in eigenvalues with increasing their 3 14617,6 14622,0 1 3, 5086 - 10~
numbers, which creates computational 4 39943, 8 39948,2 | 1,7538 107
difﬁcultiés when using the Galerkin o 89135, 4 89139,8 | 1,3203- 107
method. This is due to the condition 0 173881,3 | 173885,7 | 3,0283- 107
number. of matrix which eigenvalues are 7| 308208,51 308212,9 ) 1, 7017 10::
found. If the condition number of the 8 O08481,5 | 508486,0 | 1,0278 - 10
matrix a (cond (A) =  ||A[l- [|A]") 9 | 793403,1 | 793407,6 | 6,5676- 1078
is greater than 103, it is assumed that 10 | 1184013,6 | 1184018,0 | 4,3907- 10”7
theg matrix a is illiconditioned At the 11] 1703691, 1 | 1703695, 5 | 3,0464 - 10~
same time the accuracy of the ‘roblem is 12| 2378151,6 | 2378156, 1 | 2,1819- 10~
not enough to trust i‘? In thisp example 13 | 3235449,0 | 3235453,5 | 1,6134. 10
cond ((l) g_ 1.67 - 108 'IIl order to avpoici 14 4305974,9 4305979,4 1,2903 . 1078
- ’ 15 | 5622458, 8 | 5622463,2 | 5,0973 - 1078

errors, the calculation was carried out in
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the mathematical package Maple. The length of the mantissa for operations with real
numbers was taken equal to 191. Such problems do not arise when using the modified
Galerkin method to find eigenvalues by formulas (10).

The considered example, calculations of eigenvalues of semibounded discrete operators
by the modified Galerkin method and its comparison with the results obtained by the
classical Galerkin method confirm the validity of formulas (10).

4. Mathematical Model for Determining the Anomaly of Water
Density on the Resonant Frequencies of the Oscillations
Antiplastic

In the recent years there is the possibility of remote sensing the thickness of the ocean
with artificial satellites. Free on top the ocean’s internal waves are manifested in the form of
light reflections moving with the phase velocity of internal waves. With artificial satellites
can be fixed these highlights and measure the speed of their movement on the free surface
of the ocean. Determining the phase velocity of propagation by photos from space internal
waves and their length, density distribution can be calculated by depth and thus determine
the location of the anomalous density (any objects in the deep ocean). Such objects can
be jambs fish, submarines, bathyscaphe, divers, wrecks and so on.

Consider the problem of restoring the distribution of water density deep in the ocean
for specific regions on the phase characteristics internal waves at the free surface, using
conventional Oceanographic productions [24]. Initial works known to us in the field of
inverse problems of wave motions inhomogeneous liquid are the works by S.A. Grodsky,
V.N. Kudryavtsev, L.V. Cherkesov, I.T. Selezov. Currently, actively studying such tasks
are engaged in E.N. Potetyunko (for example [29]).

Consider the elastic layer with thicknesses H = const, fixed at both boundaries z = 0
and z = H and extending to infinity along the horizontal destinations [30]. The origin is
taken on the bottom base of the layer, axis z is directed vertically upwards, axis x,y are
directed horizontally. In the Oceanological formulation of the problem of free oscillations of
the stratified ocean in Boussinesq approximations and “solid covers” for amplitude function
of vertical oscillations of fluid particles the problem is reduced to following boundary value
problem [24]

W"(z) — 6(;) W'(z) + ’Bi’z)__ff FPW(z)=0, —H<z<0, (20)
W(—H)=0, W0)— QQEQJQW(O) —0, (21)
Bz) =~ (=) (22)

Here W is a function of the amplitude of oscillations of fluid particles in the direction of Oz
axis; §(z) is a square of the frequency buoyancy (Brent—Vaisala frequency). Brent—Vaisala
frequency is introduced for stable stratification (fluid density increases with increasing
depth) and characterizes the frequency of small free oscillations of water particles near
z level; po(2) is the density of the fluid in the equilibrium state( density of undisturbed
ocean); w is circular frequency of free oscillations of an inhomogeneous liquid; & is the
wave number corresponding the frequency in the vertical oscillations of the particles of
inhomogeneous fluid; g is the acceleration of gravity; po(z) is the density of the fluid in the
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equilibrium state, corresponding to the state of rest of the liquid; f = 2Qsin ¢ is Coriolis
force; 2 is the angular velocity of the earth’s rotation; ¢ is latitude of the area in which
the internal waves are considered; H = const is water depth. The mathematical model
with different boundary conditions was also considered in the Boussinesq approximation
when the boundary value of the problem is fell, and in approximation of a “rigid cover”,
when the boundary condition on the free surface is replaced by condition W (0) = 0. We
also consider the problem in the Boussinesq approximation and “hard cover” at the same
time.

Take the origin on the undisturbed surface of the liquid, Oz axis is directed
vertically upwards against the force gravity [3]: compared to other members of equations

B(z)

(20), summand ———=W"' little, therefore, in the future we will use the Boussinesq

approximation [24]. For this case, equation (20) is written as:

Bz) - w?

W2—f2

W"(z) + KW (z) = 0.
For any stratification and sufficient depth of the liquid, there is a surface wave
propagating under the law of homogeneous liquid [3]:

w = +/gk, 2f =0.
When processing the measured spectral characteristics from consideration should exclude
frequencies that are close to designated relations (23) and non-carrying information on
inhomogeneity liquids. Elimination of such frequencies can be carried out by replacing
boundary condition in (20) for z = 0 with condition

’ (23)

W(0) = 0.
As a result of simplifications we come to the boundary value problem
B(z) — w?
W(0)=W(-H)=0. (25)

The values of function 5(z) found based on the solution of the inverse spectral problems
(24), (25) are compared with background distribution of buoyancy frequency and
deviations from background density perturbations are determined in a given ocean area
[24]. Denote W? — f2

po(Z) - 6(2) — 02 (26)
and write spectral problem (24), (25) as

po(2)W" = —kK*W, —H <z<0, (27)
W(0) = W(—H) = 0. (28)

By entering dimensionless variable & = % + 1, we have
Po(W (&) = pW (E), 0<E<1, (29)
W(0) = W(1) =0, (30)
Bectauk FOYpI'Y. Cepua <«Maremarudeckoe MOAeJIMPOBAHUE 13

u nporpammupoBanues> (Becruunk FOYpI'Y MMII). 2019. T. 12, Ne 2. C. 5-24



G.A. Zakirova

where p = —H?k2.

Known pairs (k,,w,), n = 1, Ny, lying on different dispersion curves using the solution
of inverse spectral problem (29), (30), are determined by the values of function py(z) in the
nodes of the discretization. Knowing po(z), using (26), we can find the values of function
B(z) and water density po. To do this, use equation from (22)

dpo B(z)
dz g Po (31)
in equation (31) let’s replace with variable z = H (£ — 1), then
dpo HB(§)
R , 32
dé Po (32)

The general solution of a differential equation with separating variables (32) is

3
4 [ B(0)ac
9

po(§) = Ce <<,

Using initial condition py(1) = p., we obtain

I

1
B(Q)d¢
(€ =pue 't
where p, is the density of the liquid at its upper boundary at & = 1. Expressing § from
formula (26), we write
H f w2 w22 d
pol€) = pue £ (33)
Thus, the problem of restoring the anomalous distribution of water density in the
ocean for its specific areas by the phase characteristics of internal waves manifested on the

free surface is reduced to inverse spectral problem

Po(W(§) = pW (§), 0<g <1, (34)
W(0)=W(1) =0, (35)
where p = —H?2k2.
The found distribution of function §(z) will solve the problem on free oscillations of
a vertically stratified fluid, which, in disregard of dissipative effects (viscosity, thermal
conductivity, diffusion), reduces to Sturm-Liouville problem relative to the amplitude
function of the vertical velocity component liquid particles.

5. Mathematical Model of Physical and Geometrical
Heterogeneities of the Elastic Rod Recovery at the Resonance
Frequencies of the Longitudinal Oscillations

We consider the problem of longitudinal vibrations of a rod with variable cross section

130]
0%u 0 ou
mas = 5 (EF ). (36)

where m = m(x) is the mass of the rod length unit; m = pF'; p = p(z) is the material
density distributed along the rod; £ = E(z) is the Young module; F' = F(x) is the cross-
sectional area of the rod. We will search for the periodic solution of equation (36) in the
form

u(z,t) = U(x)e™". (37)
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Substituting (37) into (36), we obtain

/
<EF> m 9
1 / _
U" + iola U+EFw U=0. (38)
Denote 1
m
EF =1, ﬁ:%ZE, m = mg + mq(z),
P:P0+P1(33)a po = mok, my = piF, py, my = const, (39>
mo _po_ 1
EF FE cg'

Here ¢ = ¢(x) is the local speed of sound for the derivative of density p(x) and an arbitrary
Young’s module of E(z); ¢y = ¢(z) is the local speed of sound for constant density py and
an arbitrary young’s module of E(x); my(x) is the mass deviation from the constant; po(z)
is deviation of the density from a constant. In equation (38) replace variable U:

y()
Ulx) = ==
VU
and find U’ and U”
U/ — 23/1# - ?JW U// _ Qy”¢ + Z/'W - Z/W . §KU’
ps s 24

Substituting the found values of derivatives into equation (38), we obtain

2 /1 Ial /" 3 !/ !/
yw—i_y? yw ——EU/—FEU/—FEQ)QL:O,
P 29 (e EF™ /i
or /" 1,0,/ 14 !/ / /
29" + Yy —yd" W 2y — g LI
e 20 293 EF™ \ip
or (w/)Q wn
" 2 _ —
+<EF°" R 2¢>y 0
Since
m:m0+m1:00+01:i+&
EF EF E 2 E
that w2 p1w2 1 w/ 2 w//
!
= (=) —=)y=0.
4 +<cg+ E +4<¢> 2¢>y

In the resulting equation, we replace x = I and y(x) = y(I§) = f(§) (here [ is the length
of the rod)

w2l2 p1w2l2 1 w/ 2 w//
P ) - )
c E 4\ 21
Hence ) 5(6)
"+ f=-0F,
1+¢(¢) 1+ (&)
2 ! " 272
P1CH 1 <¢ )2 Y Wil
h - 1% S (i I Y o
e o(6) = P2 50 = 3(5) — 55 2=
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The spectral problem is considered for the construction of algorithms for the
reconstruction of physical and geometric inhomogeneities of the elastic rod by resonant
frequencies at longitudinal oscillations

LB
@ TTee! - (40)
7(0) = £(1) =, (41)

We consider special case E = const. Let area F' of cross section of the rod and its mass m
change according to the laws

F:F0[1+77(§)]7 m:m0[1+€(£)]7 §€ [071]' (42>
Then from equations (39), we have

o Mo ¢

p1(§) = F,  F #0© P(§) = EFp[1+n(&)],
EUA S S U (3]
PO i a@P ) 43)
() = T (€ — mo () (o)

EFy 1+n()  EFymg 1+n(g)

We write spectral problem (40), (41) as

—po(&)f"(§) = p2(&) (&) = nf(§), 0 <& <1,

(44)
f(0) = f(1) =0,
here
po(§) = %C(ﬁ)’ p2(§) = %a = Q2. (45)

Functions pg(€), p2(§) are continuous on the segment [0, 1] and in this case py(§) # 0 for
V¢ € (0,1). Get the equation for finding the values of function 7(£), specifying distribution
of the cross-sectional area of the rod. Using equals (45), find

@ 7€ n"©)
PO = ) T+ n@F M+ 0@

Hence

4py (€ )

e =0 (46)

21+ n(&)ln"(€) —n'(§)* +
Assume that the values of 7(0), n(1) are known

n(0) =mno, (1) =mn. (47)

As a result, for finding 7(¢) a nonlinear boundary value problem (46), (47) is obtained
which solution can be found by numerical methods. Consider two special cases where
F = Fy = const and p = pyg = const. In the first case, the density distribution of the
material along the rod is as follows

P=T o0 4+ ¢e)]. (48)
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In the second case, the cross-sectional area of the rod is calculated by formula

mo
F="n4 ) (49)
Po
It is shown that the developed method for solving inverse spectral problems makes
it possible to determine the physical and geometric inhomogeneities of an elastic rod by
resonant frequencies at its longitudinal and torsional vibrations.

6. Applications of Inverse Spectral Problems

As it is known, the inverse problem of spectral analysis means restoration of differential
operators by some their spectral characteristics. Due to the need to address new feedbacks
spectral problems, and describe complex technical processes the interest in this subject is
constantly increases.

The results in the inverse spectral problems theory are applicable in many industries
natural science. Developed by G.A. Sviridyuk the relative spectral theory [16,49] allows
us to investigate those mathematical models to which the classical methods of spectral
operator theories are not applied. Relevance of the spectral problems for discrete
semibounded operators are due to not only a fundamental interest in this issue, but also to
the need to study important applications, in particular, in mechanics, physics, electronics,
Geophysics, Metrology, seismic exploration, identification of composite materials and other
areas of science and technology. We constantly face with the phrase “spectral problems have
wide application in various fields of natural science”. Let finally bring the disparate facts
in a more or less coherent whole.

For example, in solid mechanics inverse spectral problems allow us to determine the
anomalous density in the depths of the ocean on the speed of propagation of internal waves
and their length [7,32]. The problems of non-destructive control of building structures can
be reduced to inverse spectral problems too [4]. In this tasks it is necessary to determine the
density and structure of the material in the entire construction, when resonant oscillation
frequencies of individual building elements are known. In optics, problems of this kind
arise in determining the refractive index profile, which provides equidistantly spectrum
of waveguide models [40]. Moreover, inverse problems are widely used in radio electronics
in the synthesis of parameters non-uniform transmission lines with specified technical
specifications [22,23|, in the theory of elasticity in determining the size of cross sections
beams at given frequencies of its own oscillations [44].

Inverse spectral problems have a wide application in such sections of physics, as
quantum chromodynamics, molecular physics, the theory of the nucleus, where the model
potentials are widely used. For example, the problem of determining the scattering phases
from the observed experimental data in scattering reactions of [6]. The solving of inverse
spectral problems in quantum mechanics allows to determine the atomic forces according
to the known energy levels (i.e. spectrum), control the transparency of quantum systems,
tunneling [37,45].

In Geophysics such problems arise when you search for natural mineral deposits in
the measured vibrations of soil, rocks, water masses on the surface, in determining the
density and Lame parameters, describing the properties of the Earth, in determining
the electrical permeability and conductivity, magnetic permeability by measurements
electromagnetic fields, or acoustic velocity by measurements sound [2,21], in determining

Bectauk FOYpI'Y. Cepua <«Maremarudeckoe MOAeJIMPOBAHUE 17
u nporpammupoBanues> (Becruunk FOYpI'Y MMII). 2019. T. 12, Ne 2. C. 5-24



G.A. Zakirova

the temperature profile of the measured thermal spectrum atmospheric radiation by
thermal sensing of the atmosphere [33], etc. The tasks in different issues of observability
and identification controlled systems, issues of computer diagnostics of technical natural
oscillation frequencies and control systems frequency-resonance characteristics of various
technical devices described by linear dynamic systems also reduce to inverse spectral
problems [5,14,15,25,41,42, 46].
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OBPATHBLIE CITEKTPAJIBHBIE BA/TAYY 1 MATEMATNYECKUNE
MOAEJIN MEXAHUNKN CIIJIOIIIHBIX CPE/]

I''A. Baxuposa, HOxuo-Ypaubckuii ToCy1apCTBEHHBIN YHUBEPCUTET, I. UeIsa0MHCK,
Poccniickas @enepariust

CraTbst HOCUT 0O30PHBIN XapaKTep U COJMEPXKUT Pe3y/IbTaThl B 00JIACTU CIEKTPAIbHBIX
3aJ1a9 JJIsl MATEMATHIECKUX MOJIeIeil ¢ JUCKPETHBIM MOJyOrPAHNYEHHBIM OllepaTopoM. B
OCHOBY TEOPHUH TIOJIOYKEHBI JINHEHHbIE (POPMYJIbI BBIYUCIEHUsT COOCTBEHHBIX IUCEJT JIUCKPET-
HOTO OIIEPATOpPa W PEYKIUsl PACCMATPUBAEMBIX CIIEKTPAJIbHBIX 3319 K MHTErpajbHOMY
ypasuenuto @perosibmMa mepBoro poja. Paszpaboranubiii Ha ocHOBe MeToa ['ajiepkuHa BbI-
YUCIUTEJIBHO 3P DEKTUBHBIN YUCIEHHBI METOJ| pellleHnsi 0OPATHBIX CIIEKTPAJIbHBIX 33189
JUIsl IUCKPETHBIX MMOJIyOIPAHUIEHHBIX OIEPATOPOB TO3BOJISIET C BBICOKON TOYHOCTHIO BOC-
CTaHABINBATH KO PUIMEHTHBIE (DYHKIMH KpaeBbIX 3a1a49. [lomyaennbie pe3yabTaThl Ipu-
MEHUMbI TIPUA MCCIIETOBAHAN 38184 [t TUMDHEPEHITHATBHBIX OIEPATOPOB JIIOOOTO MOPSIIKA.
[TpuBeeHbl pe3yJibTaThl YUCAEHHOIO PEIeHNs 0OPaTHON CIIEKTPAJIBHON 3a1a91 JIJIsi BO3MY-
IIEHHOTO M PePeHNnaILHOIO OIIepaTOpa IeTBEPTOro nopsijka. 1Iposejeno uccreoBanme
HEKOTOPBIX MATEMATHIECKUX MOJEJeH MEXaHUKM CILIONTHON CpeJibl HA OCHOBE CIEKTPAaJIb-
HBIX 33189 JJIs JIUCKPETHOTO MOJIyOIPDAHUYIEHHOTO OIepaTopa.

Karouesvie crosa: obpammas cnekmpasvnas 3a0a4a; OUCKPemMHvll onepamop; onepamop
YeMeepmo20 NOpAdKa, CAMOCONPANCEHHBLT ONEPAMOP; COOCMBEHHDBIE YUCAG; COOCTNEEHHBLE

&ymw,uu; HEKOPPEKMHO NMOCTMABAEHHDILE 3adau.
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