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We consider the stability problem for two-dimensional spatially periodic flows of general
form, close to the shear, assuming that the ratio of the periods tends to zero, and the average
of the velocity component corresponding to the “long” period is non-zero. The first terms of
the long-wavelength asymptotics are found. The coeflicients of the asymptotic expansions
are explicitly expressed in terms of some Wronskians and integral operators of Volterra
type, as in the case of shear basic flow. The structure of eigenvalues and eigenfunctions for
the first terms of asymptotics is identified, a comparison with the case of shear flow is made.
We study subclasses of the considered class of flows in which the general properties of the
qualitative behavior of eigenvalues and eigenfunctions are found. Plots of neutral curves
are constructed. The most dangerous disturbances are numerically found. Fluid particle
trajectories in the self-oscillatory regime in the linear approximation are given.
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Introduction

Mathematical models that describe two-dimensional or spatially periodic fluid flows
are widely used to study various natural phenomena in the atmosphere and the ocean [1].
In [2], a model of two-dimensional creeping motion of viscous liquid in a flat channel is
considered. Based on a priori estimates, the solution of the problem is constructed and
its properties are investigated. The Kolmogorov problem for a two-dimensional viscous
fluid under the influence of spatially periodic external forces is considered in [3|. Using the
Galerkin method, stationary and spatially periodic solutions are found numerically. In [4]
nonstationary time-periodic structures are obtained using long-wave perturbations of the
Kolmogorov flow.

In this paper we consider the two-dimensional (x = (x1,72) € R?) viscous
incompressible flow driven by an external forces field F'(x,t) that is periodic in x; and x5
with periods ¢; and /5, respectively. The flow is described by the Navier—Stokes equations

(?9—’: + (v, V)v —vAv = =Vp+ F(x,t), dive =0,

where v = 1/Re is the kinematic viscosity and Re is the Reynolds number. The period
¢y = 27, and the ratio of the periods is characterized by the wave number a: ¢y = 27/,
a — 0. Let (f) denote the average with respect to z1, {(f)) denote the average over the
period rectangle ©Q = [0, ¢1] x [0, ls]:
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The spatial average velocity is assumed to be given: ((v)) = q. The velocity field is
assumed to be periodic in z1, x9 with the same periods /1, /5 as the field of external forces.

A longwave asymptotics (a — 0) is constructed for the stability problem of the steady
flow close to the shear, which will be called the basic flow:

V = (aVi(2,), Va(a)), (V) # 0. (1)

The class of flows under consideration generalizes the Kolmogorov flow with a
sinusoidal velocity profile
V = (0,vsin(xy)). (2)

The problem of investigating the stability of a two-dimensional flow under the action of
spatially periodic force was proposed by A.N. Kolmogorov in his seminar. The instability of
the Kolmogorov flow with respect to long-wave perturbations in the linear approximation
was proved in [5]. The long-wave asymptotic behavior of the stability problem for two-
dimensional parallel flows of general form

V= (07 %(xl))7 <‘/2> 7é 0

was considered in [6]. Research [7] is devoted to the study of self-oscillations arising in the
loss of stability of parallel flows of a viscous fluid affected by long wavelength perturbations.
In [8], the main terms of the asymptotics of the secondary self-oscillatory regimes in the
case of the basic flow close to parallel were found, but general rules in coefficient expressions
were not obtained.

In [9] recurrence formulas for finding the k-th term of the long wavelength asymptotic
for the stability of steady shear flows were derived in the case of nonzero average. The
coefficients of the expansions are explicitly expressed in terms of some Wronskians, as
well as integral operators of Volterra type. It is shown that the eigenvalues of the linear
spectral problem are odd functions of the parameter «, and the critical viscosity is an even
function. In the particular case, when the deviation of the velocity from its mean value
Vo(z) — (Vo) is an odd function of x, the coefficients of expansion of the eigenvalues in
series in powers of «, starting from the third, are zero and the eigenvalues can be found
exactly: o102 = £im(V)a,m # 0. In [10], recurrence formulas for finding the kth term
of the long-wave asymptotics for the stability of two-dimensional basic shear flows of a
viscous incompressible fluid with zero average are derived.

The aim of this paper is to generalize the results [9] related to shear flows in the case
of basic flows close to shear.

1. Equations up to o*

Let H denote the subspace of functions f € L,(0,¢;) that are orthogonal to unity:
(f) = 0. The operator I : H — H is the inverse of the differentiation operator and is

completely continuous: x z
If = | f(s)ds— < f(s)ds> . (3)
[t
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Let W(f,g) denote the Wronskian of functions f and g, the auxiliary function 6
characterizes the deviation of the second component of velocity from its average value:

df 20

%7 @:‘/2_0/2)7 <0>:O‘

dg
Wi(f,g)=f——
(f9)=Ff7 —9
Looking for a solution (v, p) of linearized on the basic flow (1) perturbation equation in
the form of normal oscillations, we obtain the linear eigenvalue problem (here and below,
T =11, 2 = Qry):

dV/ 0 0 0? 0? OP

2 1 ©1 P1 Y1 2071

il it et 2

op1 + (Zi/dz +04V1(2) o +04V2(2) e Va 502 +§2 5.2 ) a?}"’ (4)
ava P2 Y2 ©2 207 Y2 _ . or

72t dx +ani(z) Ox +ava(z) 0z V( 0x? ta 022 ) Yo (%)

a a 27

¥1 P2 _ _
o + o 5 = 0, /(pl(x, 2)dz =0, (p2) =0. (6)

0

The value of the parameter v at which one or several eigenvalues o lie on the imaginary
axis is called critical.

The unknown perturbations of velocity ¢(z, z), the function P(z, z), the eigenvalues
o and the critical viscosity v are sought in the form of series in powers of «:

o(a) = Z od®, v=uv, + Z v, (7)
k=0 k=1

P = i prak, P = i PFa”, (8)
k=0 k=0

We substitute (7) — (8) in (4) — (6) and equate the coefficients with the same powers of

a. Up to a® from the continuity equation (6) we deduce that ©? = ¢9(z). Then it follows
0

or
from (4) that op(z) = o Whence g = 0 and P° = P°(2). From (5) we find the
T

function ¢9, that has the same form as in the case of shear basic flow:

&= L8(Dao(e), aplz) = L (9)

v, T da
Averaging equation (4) and equating the coefficients up to a!, we obtain:

d 0
() + (o) L = 0. (10)

From (10) we find o7 = im(Va), ¢Y(2) = e™"™# where m # 0 is the wave number.
Up to o, k > 1, from (4) — (6) we derive the following system of equations:

Pot _oP+ & B ~ A

k—j —
Vs =—+ > 050] T =DV - > Vj————+
2 £ J¥1 , J 2 , J 2
ox or ;3 o =1 ox ]iol 0z (11)
0py~ dV/ opi~
1 1 k-2 Y1
+Va(x +——py "+ Vi(z
( ) az dZ 2 ( ) al' )
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32902 A < i

250 T 5T 02 (12)
) Dk ops™ | 0Py
HW (] 0} + (Vo) 2=+ Vi) - 9z
2T
ak ak—l
A / Pdz=0, (g5 =0. (13)

0

Here, the sum is assumed to extend over those values of j for which the upper boundary
is not less than the lower one. The solvability condition for equations (11) — (12) is that
the average of the right-hand side over period ¢; is zero. Averaging (11) for k& > 2, we get
the equation for finding (©F~1):

- B d Spkfl d2g00 d2
v (Zm<so’f ty+ 48 >) = 5T ) — o) -
k—1
_Z +Zyjd 2 Spllg . ]> kal(z)' (14)
=3

We will call (14) the averaged equation up to o*. On the other hand, the solvability
condition of equation (14) serves to find v;_o and oy:

((Fi1(2)e™)) = 0. (15)

For k = 2, from the solvability condition (15) for equation (14) we find: v? =

(0?), oy = 0. For the values v? and oy found, the right-hand side of (14) is zero. To
exclude trivial nonuniqueness, we put (1) = 0, as in the case of shear flow [9].

The scheme for finding the k-th term of the asymptotics for £ > 1 is as follows. Suppose
b1 O PR oy, vk, (0F) are known. Applying the integral operator I defined by

(3), from the contlnuity equation (13) we find

oh=-1(Z) + oy (16)

Substituting the ¥ found in (11), we define P* up to an average values. After this, from
(12) we find ©%. The values found in the k-th step allow writing the solvability condition
for the (k + 2)-th term of the asymptotics. From the averaged equations up to of*? we
find o449, vk, (P51, Then the process is repeated.

For a non-parallel basic flow (1), the coefficients of expansion of the critical viscosity
v and the eigenvalues o have the following structure:

vk = [Vk] + Uy Oksa = [Okt2] + Okto, (17)

where the square brackets are used to denote the coefficients of viscosity and eigenvalues in
the case of basic shear flow, and the wave is used to denote additional term. If V;(z) =0
then that additional term is equal to zero. It will be shown later that components of

Bectauk FOYpI'Y. Cepua <«Maremarudeckoe MOAeJIMPOBAHUE 31
u nporpammupoBanues> (Becruuk FOYpI'Y MMII). 2019. T. 12, Ne 3. C. 28-41



0.V. Kirichenko, S.V. Revina

eigenfunctions and pressure ¥, PF for k = 1,2,3 and ¢4 for k = 1,2 have the same
structure:

ok =[] + o + (o), (18)
= lvn] + 5, (19)
P* = [P*] + Pk + (PF), (20)

while for large values of k, additional terms appear in the expressions of the eigenfunctions
¢ and the pressure P. These terms depend on the mean values of previous coefficients.
2. Asymptotic Terms up to o'

Putting k£ = 1 in (16), taking into account the expressions of ¢9 in (9) and (p}) = 0,

we find ]
¢ 1 dy?
L (222 - 21y
1 (82 v, dz (av),

and P!, which coincides with the one found in the case of shear basic flow:

d(p(l) 1 do
— + (P = —-2—.
[~ < >7 QI(x) lr

P! = q(z)
Represent l as a sum (19), where [p}] and g/;% satisfy the equations:

pl] . R P S
W - {W(@l,e )} — @xQ 5 Vy 612 - ‘/1(2;)%

Vs

(Here and below the deviation of a periodic function from its period-average value is
denoted by curly brackets: {F} = F(z) — (F)). Coefficient [p}] coincides with the
coefficient ) for the shear basic flow except for the term containing vy, which has not
been determined yet. Suppose  ay(0) = I{W(#',0)} |9], then

1 dy? 121
1 1
[902] = ﬁﬁal(é)

*

~ 1 1
- V—sog, 3 = V—m(z)1(<p3) = ;w?(Z)Vl(Z)I(ao)-

For k = 3, we transform the right-hand side of (14), taking the known values [11] = 0

im3

and [o3] = —7(9/(11) into account:
_ d2(,00 d2 — _
Fy(z) = 2V1W; — alf'e) — G301 (2).

From the solvability condition (15), taking into account the orthogonality of 6" and i, we
obtain v; =0, 073 = 0. As in the case of shear basic flow, v; = 0, 03 = [03]. Hence the
right-hand side of (14) is zero. To exclude trivial non-uniqueness, we put (p?) = 0. In the
particular case when #(x) is an odd function, o3 = 0, as in the case of shear basic flow.
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3. Asymptotic Terms up to o?

We derive ¢? from the continuity equation (16), representing ¢? as a sum (18), where

From (11) for & = 2, we conclude that [P?] coincides with the one found in the case of
shear flow:

1 d?
[P?] = dil G, @ = —a1+ I{0"I(ao)},

and P? satisfies the equation

oP? 92 dW ¢!
= Vx - — — V
o * or2 Z dz () ar or’
from which, applying the integral operator I, we find
—~ dv 2 dV/
P2 = _Qd—ll(ﬁ%) 801( ) d;[(ao).

Let consider the equation (12) for k = 2. We represent 3 as a sum (19), where [©3]

and 3 satisfy the equations

82 ('02 dQ ('00 Y 82 ") 82 ©
A R (AN ) G e

82902 . Y <V> vy
v S5 = ety + ST

Wirey + o) 2 1)

Taking into account already known expressions of ¢ and ¢?, we find ©3:

= 500 0) - Lo,
() = LW (", Ta1)} -+ 2 (01(6) — aof6))] 2

The coefficient ay(6) (22) is the same as in the case of shear basic flow; [p3] matches
structure with the corresponding expression of the shear basic flow. As it will be shown
below, the coefficient 15 differs from the one found in the case of shear flow.

Applying the integral operator I twice, from (21) we deduce

—~ Va) dVj
A= P e+ 2T e+ Ly,
m2
From (14) for k = 4 considering [o4] =0, [n] = —ﬁw/@) we get
v
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To verify the solvability condition (15), we need the expression for <(<p26””2>)

(Fe™) = T {ADG(e) + o (V) ole), (23)

* *

g1 = Iao, 92(@ = IZ{W(]%,Q”)} — lay, f2($) = 191(95) = 12(10-

Separating the real and imaginary parts in the solvability condition (15) for k = 4, we
obtain

~ 1 1 ~ 3
7 = 5 VN = —5s (VDO = T (20

Note that the imaginary part of (23) contains the mean values of the odd degrees of
V1, and the the real part contains the mean values of the even degrees of V.

The solution of (14) for & = 4 will be sought in the form (p3) = c(z)e ™
where ¢(z) is a 2m-periodic function. Let I, denote the operator I defined by (3) with
variable upper limit z. Condition (15) uniquely determines the function ¢(z). Then
c(z) = 7ML (F5(2)e™*) /(Va).

Further, in each of the orders, two special cases will be considered.

Case 1. f(x) is an odd function (it means that the deviation Vo — (V5) is an odd
function). Hence ¢;(x) is odd and from (23) it follows that go(x) and fo(x) are even
functions.

Case 2. Vj(z) is an odd function of variable z. Then ((V;(z))) = 0 and o4 = 0.

4. Asymptotic Terms up to o?

From the continuity equation (13) for &k = 3 we find %, in the form of a sum (18),
where

1 d3?

Vo
(03] = N I

Ta, — 22
asz 1/9017

*

~ 1 002 (Vo) @ (dV; 10
3 _ _ — 713 s o o Zrir4 0 - 2 1
pi=—1 {W ( 5, 0 )} 2 0: i Lz ) =+ 5, (Vi(2)p3).

P3 can be represented as a sum (20) where

3 1 d3g01 B , -
[P ] - 1/2 dz3 Q3(0)7 Q3(0) = —asy +[{9 I(al)} — y*[ agp,

and P3 is determined by expression

3 Ot 04} dVi
P3=—10" L5 —I? L") b —2—1
{ 0z } {W( 0z’ )} dz ().

As in [10] we use the following notation. If the function f is expressed in terms of a
linear combination of the functions ¢{(z) and its derivatives with coefficients depending
on z, then by f((¢%)) we denote the expression that coincides with the expression f if
©9(2) is replaced by (¢})(z). Since (p3) # 0, it is convenient to represent @3 as a sum

31,31, .3 0 3
©5 = 5] + 3 + Pa(((#1))), (25)
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where [p3] has a form

1 d®p) iz V3
31 1 0
5] = A az(0) — QV—[‘P ] = L

*

as(0) = P{W (0", Laz)} + vi(q2 — a1)] —

—~

Then ¢3 is determined from the following equality:

A=l (a{£2}> PV (0} + V)1 Q@}%) -

v 8290
e PR V()

*

m

To find (1), v3 and o5, we write F taking into account [vs] =0, [o5] = —(¢'a3(0)):
I/*
_d*Y &~ 20
Fy(z) =213 dzzl - @(9/80@ - (05 + *203) 80(1](2’)-
Separating the real and imaginary parts (15) for & = 6, we obtain

~ m? _im? 205
5= (VD). 5= T (VN S~ e,
gs = IQ{W(IQQ,QH)}—F[GQ, fg = IQ{W(IfQ,OH)}—i—IgQ (26)

Now, unlike the previous step (24), the expression for the viscosity expansion
coefficients includes the averages of the odd powers of V;, and the eigenvalue coefficient
contains the averages of even powers of V;. The solution of (14) for k& = 5 has the form
(p]) = e7™=_(Fy(2)e"™=)/(Vy), similar to the order o3.

Case 1. (z) is an odd function. Then it follows from (26) that f;(z) and gs(x) are
odd functions, hence v3 = 0 and, taking into account o3 = 0, we find o5 = [05] = 0.

Case 2. Vi(z) is an odd function of z. Then ((Vi(z))) = 0 and v5 = 0, as in the case
of shear basic flow.

5. Asymptotic Terms up to o*
From the continuity equation (13) for k = 4 and ¢3 defined in (25), we find ¢f:
1 =[] + et +er({e1) + (#1),
where [p1], ;‘11 are defined by formulas:

1 d*Y
41
[()01] - 1/4 dz 4

Vs v
Ha(0) — 2] - 390%,

~ 2 9% [dV; 1 03
4 __ = = [4 0 __[3 S 21
i 1/*322((12 @) v, {W<8z’0>}+

Vi o~ 08\ Pet\ 10
L) (Wﬁ + ai) uE ( a@) L2,

Vy *
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The pressure P? is representable as the sum P4 = [P1] + P4+ PY(({¢?))) + (P1), where
1 d*? Vo

P4 — 1 _ e P2

P = 50w - 21

*

~ o*{P? . ) dv;
P4:—12< ;22 }> —IQ{W (%,6)} {9 a"‘;l}—zdlwi,

and ¢4 is found in [9].

Representing 3 as the sum i = [p3] + ;‘21 + e3({p)) + ©3({¢1)) and taking into
account

1 d4('00 1/2 21/3 21/2 Vy
41 1 2 0 1 2 0
[of] = o s+ T = 2] = Sl - 2. 00) - P,
we find ;‘21:

~ 1 ,({op3 V; dp 1 ,
v3 = V—IQ (W) +%[2 ( <P2+a—;> + V—IQ{W(S%@ )} +

03 o5 Vs U3~ Py 1
+V—*IQ¢%—V—*¢§—V—*90%—I <322> + Vil Vg + —IPag(z) F(2).

*

To find (¢3), 06 and vy, we write out the right-hand side of the averaged equation up to
6
a’:

8/ 0 3 d2<90411> 27
=l dZ2 d22< > _06901(2)_03<¢1>+V* d22 . ( )

Separating the real and imaginary parts of (15) and considering the previous
coefficients, we obtain

- 1 —~ Us N Uomn?

7 = GRe(({0h) ™)) — 5o (] = ) - 13
—~ 2

Go = m*Im{{(0'phye)) — T g2y — 22575

Vi Vy

(O'T{W (Ia1,60")}),

Introduce the notation:

hy = ={W(f2,0")} + (Vo) I fo, ho = —I*{W (Ihy,0")} + (Vo) I*ha,
fo=T{W(\Ifs,0)} +1gs, gs=I1*{W(Ilgs,0")} — Ias.
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Then the expression Re({((¢ ;‘21)6””2» has the following structure

Re(UOBe) = S VN A + o4 (G ) D) + WD),

*

where A;, Ay are determined by the formulas
Al = —m2f4 - 3V2V*f2 -+ 2m212f2, A2 = 3V3[2f2 - []’LQ
Similarly, Im(((¢' ;‘21)6””2» has a form:

= imz m
Im({(@h)e™) = 7
where By, By are determined by the formulas:

By = IP{0" fo} + IP{W (f2,0")} + *{W (I* f5,0")} + *g —

y 1
—2IH{W (11, 0"} + 92) = —0u.

* *

BQ == [2{W(12f2, 9//)} + [fg

Note that in the order a#, as in the order o, the expression for the viscosity expansion
coefficients includes the averages of the even powers of V;, and the eigenvalue coefficient
contain the averages of odd powers of V;. As in the previous order, for k = 6 the solution
of the equation (14) has the form: (p3) = e "= [ (F5(z)e"™*)/(V5).

Case 1. 6(z) is an odd function. Then fy(x) and g4(z) are even functions.

Case 2. Vi(z) is an odd function of z. Then ((V;(z))) = 0, ((V3(2))) = 0 and o = 0.

Using the obtained formulas, we construct graphs of curves of neutral stability y =

v(a)

qualitative picture. The most dangerous are perturbations at m = 1 (Fig. 1).

(V) Br) + —= (Vi) (6 Ba),

*

. For general flows, as well as for special cases considered above, there is a similar

m=3 m=2 m=1

0 01 02 03 04 05 06 ©

Fig. 1. Neutral stability curves

The found asymptotics allows us to investigate the trajectories of the motion of passive
impurity particles in the secondary self-oscillatory flow [8|. The trajectories of particles in
the linear approximation satisfy the equation

X = V(X) + U(X, t), U(X, t) = (pei"*’t + @*e_iwt,

The qualitative behavior of the trajectories is presented in Fig. 2.
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Fig. 2. Trajectories of the motion of particles of a passive admixture

Conclusion

The first terms of the long-wavelength asymptotics with respect to the parameter o
of linear spectral problem for a class of non-parallel flows close to the shear are found. A
comparison with the case of the shear basic flow is made. It is shown that the expansion
coefficients in terms of « eigenvalues and the critical value of viscosity have the form (17),
where the square brackets are used to denote the coefficients of viscosity and eigenvalues
in the case of basic shear flow, and the wave is used to denote additional term. If V1(2) =0
then that additional term is equal to zero.

The first terms of the expansion in series in the parameter a of velocity ¢ (2), ©3(z, 2),
o1 (z, z) and pressure PV, P! coincide with the coefficients for the case of shear basic flow.
Average values (1) = (p?) = 0, as in the case of shear basic flow, but (o¥) # 0 for k > 3.

The coefficients of the decomposition in a series of eigenfunctions have the following
structure:

of = [f] + % +o1({ef 1) + (o),
o5 = 5] + ©f + o3((PF ™)) + ) ((eh)),

and the coefficients of decomposition in a series of pressure have the following structure
PY = [P¥] + Ph+ PY({py ™)) + (P").

Here k = 1,2,3,4. The expressions in square brackets [pF], [P*] are the solutions of
the same equations, as in the case of shear basic flow and coincide with corresponding
coefficients if v; =0, 0; = 0.

If at least one of the conditions is met: 6(z) is odd or V;(z) is odd, then critical value
of viscosity Vi(z) is an even function of « as in the case of shear basic flow (up to order
k = 4 inclusively):

v(a) = v, +ma® +yat +0(°), a—0.
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If 6(z) is odd, then odd components of the eigenvalue decomposition, starting with
the third, are zero:

o(a) = o1+ oot + 06’ + O0(a”), a — 0.
If Vi(2) is odd, then even components of the eigenvalue decomposition are zero:
o(a) = o1+ 030” + 050° + 0(a®), a — 0.
Thus, under both conditions eigenvalues up to terms of order a® have the form
o(a) = tima (Va) + O(a®), a — 0,

as in a shear basic flow case.

For a basic flow close to a shear of general form the inequality vy < [1s] is fulfilled,
therefore, the loss of stability of such flows occurs at higher Reynolds numbers, than for
shear flow.

Neutral stability curves qualitatively coincide with the corresponding curves for
the Kolmogorov-flow (2). The trajectories of the passive admixture, found numerically,
consistent with Obukhov’s hydrodynamics experiments [11].
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OB YCTONYUMBOCTU ABYMEPHBIX TEUEHU, BJIN3KNX
K CABUT'OBBIM

O.B. Kupuuenxo', C.B. Pesuna'?

YFOknbiit depepanbubiil yuusepeurer, r. Pocros-na-/lony, Poccuiickas ®@eeparius
2IOzxHblit MaTeMaTHUeCKnil HHCTUTYT BilaJMKaBKa3cKoro Hay4noro nearpa PAH,
r. Biragukaskas, Poccuiickas Peepariust

PaccmarpuBaercst 3aJ1a9a YCTORYIUBOCTH JIBYMEPHBIX MMPOCTPAHCTBEHHO-
[IEPUOJINIECKUX TeYeHUil oO0Iero Buua, OJIM3KUX K CIBUTOBBIM, B IIPEJIIIOJIOXKEHNN,
YTO OTHOIIEHUE IIEPUOJIOB CTPEMHUTCS K HYJIIO, & CpPEeJHee CKOPOCTU BJOJb <JJIMHHOIO>
[eprojia OTJMIHO OT HyJisl. HalijleHbl TiepBble WIEHBI JIMHHOBOJHOBON ACHMITOTHUKH.
KoadbdurmenTsl acHMITOTHYECKUX PA3JIOKEHHUN SIBHO BBIPAYKAIOTCS 9epe3 HEKOTOPbIe
BPOHCKHAHBI ¥ MHTErpPaJibHbIE OMEepATOpPbI TUla BosbTeppa, KaK W B CIABUTOBOM CJIydae.
BrisiBiiena cTpyKTypa COOCTBEHHBIX 3HAUYeHWMII M COOCTBEHHBIX (DYHKIUIl JjIs IepPBBIX
YJIEHOB aCUMIITOTUKH, I[IPOU3BEIEHO CPaBHEHHME CO CIBHUIOBBIM ciydaeM. lcciemnoBaHb
IIOJIKJIACCHL  PACCMATPUBAEMOI0 KJjlacca TEeYeHUil, B KOTODPBIX OOHAPYKHBAIOTCS OOIIHe
CBOMCTBA KAYECTBEHHOTO IOBEJIEHUsI COOCTBEHHBIX 3HAYEHUI W COOCTBEHHBIX (DYHKIHIA.
ITocTpoennl rpadukn HEATPAJBHBIX KPHUBBIX. UHWCAEHHO HaiieHbl HAmbOJIee OMacHbIe
BO3MyIleHus. lIpuBe/leHb TpaeKTOpUM JIBUYKEHHsS I[TACCHUBHOW NPUMECH BO BTOPUYHOM
aBTOKOJIe0ATE/IbHOM II0TOKE B JIMHEHHOM ITPUOJIMKEHUN.

Karouesvie cr06a: OAUHHOBOAHOBAA ACUMNMOMUKA; YCMOTNUBOCTD IBYMEPHIT Teye-

HUT 8A3K0T HCUIKOCTIU, KPUBBIE HEUMPAALHOT YCMOUNUBOCTIU.
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