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The problems of distribution of transport flows are currently relevant in connection with
the increase in vehicles. In the 50s of the last century, the first macroscopic (hydrodynamic)
models appeared, where the transport flow resembles the flow “motivated” compressible
liquid. The scientific approach based on the Navier—Stokes system. The main idea of the
scholars is consideration the hydrodynamic models on the grounds of interrelation between
the transport flow and incompressible fluid. For modelling traffic flows we examine Oskolkov
equation on the geometric graph, where the edge has two positive values corresponding to
it “length” and “width”. Certainly, in the context of mathematical model the values I, and
br are dimensionless, but for clarity it is convenient to imagine that [; is measured in linear
metric units, for example, kilometers or miles, and b is equal to the number of traffic
lanes on the roadway in one direction. In terms of the Oskolkov model, we obtained a non-
classical multipoint initial-final value condition. We will study such a model using the idea
and methods of the Sobolean equation theory. These notes describe a numerical experiment
based on the Galerkin method for the Oskolkov equation with a multipoint initial-final
condition on the graph.
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Introduction

Despite the fact that a lot of time has passed since the appearance of the first works,
according to a number of well-known experts in the field of mathematical modeling of
traffic [1, 2|, the problem of formation of not loaded and congestion situations has not
yet been fully studied (and is similar to the problem of describing turbulent flows). Using
the terminology proposed by B.S. Kerner, we can say that at the moment there is no
generally accepted approach describing the behavior of motor vehicles in the synchronized
flow area. That is, if the car flow is like liquids, the most difficult situation to simulate is the
freezing liquid. Confirmation of this statement is the fact that different teams involved in
the modeling of traffic flows, as a rule, use different models: from the Lighthill-Whitham
model (A.A. Kurzhanski [3]), ending with models in which each driver is characterized
by its variational principle (I.A. Lubashevsky [4]). Today, there are many approaches to
solving this problem [5, 6].

Our study is based on the model considered by A.B. Kurzhanski, who was the first
to note the undoubted properties of the transport flow as viscosity and incompressibility.
Developing this approach, it is proposed to replace the Navier—Stokes equations with
the more general Oskolkov equations, which take into account not only the viscosity and
incompressibility of the flow, but also its elasticity. Indeed, when the traffic light is switched
on, the vehicles do not stop immediately, but smoothly reduce the speed up to the stop,
accumulating in front of the stop line. Similarly, when the traffic light signal is switched
on, vehicles do not start instantly and simultaneously, but move from one place to another
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gradually gaining speed.Thus, the transport flow shows the effect of retardation inherent
in viscoelastic incompressible liquids. Secondly, Oskolkov equations are considered on the
geometric graph, the main difference of which is the statement in conformity to each edge
of the two positive numbers corresponding (in our case) to its “length” and “width” [7].
We will study such a model using the idea and methods of the Sobolev equation theory.
The solution to this problem is presented in the article [8].

1. Problem Statement

Let us consider the finite ordered set of finite coherent oriented graphs G = G(V,E),
where V = {V;} is the set of vertices, and & = {E}} is the set of edges, moreover, each
edge FEj of each graph G corresponds to two numbers [, and b, € R, responsible to its
«‘length” and “width” respectively. Certainly, in the context of mathematical model the
values [, and b, are dimensionless, but for clarity it is convenient to imagine that [, is
measured in linear metric units, for example, kilometers or miles, and by is equal to the
number of traffic lanes on the roadway in one direction. On each edge of Fj of each graph
G define the linear Oskolkov equation [9]

Aukzt — Uktge = VUkge + fk: (]->
Here uj, = uy(x,t), * € [0,1;], t € R, (= {0} UR,) characterizes the average speed of
traffic flow on Ey; fr = fi(z,t), (z,t) € [0,1] x R, corresponds to the (average) force
that causes the wheels of vehicles to spin. The coefficients A are equal to the unit divided
by the retardation coefficient, which can take negative values, so we consider A\ € R. The
coefficient v is responsible for the viscosity of the transport flow, i.e. for its ability to
“dampen” sharp speed differences; within the meaning v € R,..

Let’s find the conditions that connect the solutions of different equations (1) in the
vertices of the graph. Since in this model the vertices are associated with crossroads, the
conditions for the velocity mode at the crossroad passage are very important. For the first
consider continuity condition

uk(0,t) = up (I, t), VE, € E*(V}), VE,, € E¥(V}). (2)
Here E*“)(V;) denotes the set of edges of the graph G, emerging from the vertex V;
(entering the vertex V;). In terms of our model, condition (2) means that the speed of the
vehicle entering the crossroad must be equal to the speed of the exit. This condition is
quite natural, otherwise there may be congestion at crossroads or accidents. Besides, we
need thread balance condition
> buka(0,8) = D btia(lm, 1) =0, (3)
EpeBx(Vj) Em€E« (Vj)
which requires that the number of vehicles leaving for the crossroad is equal to the number
of vehicles leaving the crossroad. Take 7, € R, such that 7,_; < 7., where z = 1, n. Note
that we can supplement the condition
P.(u(t,) —u,) =0, z=0,n
where P, is the relatively spectral projectors [10].

We introduce the Hilbert spaces Lao(G) = {9 = (91,92, -9k, ---) : g € L2(0,1x)},

WG) = {u= (ur,uz, ..., up,...): ux € Wa(0,0x)}.

(4)

Theorem 1. [8] For any A\, v € Ry, u, € (G), z = 1,n, there exists a unique solution
u € C®(R4;U(G)) of problem (1) — (4).
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2. Numerical Algorithm and Experiment

Consider the Oskolkov model on a two-edge graph with a multipoint initial-final
condition. This problem can be considered as a transport stream. The graph is presented
as a road with an intersection, where each edge is separated by a traffic light.

P

Fig. 1. Crossroads map Fig. 2. Graph G

In experiment, we introduce the values of auxiliary parameters, where v and \ are
the coefficients, k is the number of edges, [ is the length of the edge. Let be A = 10;v =
1; fe(x) = 0;1; = Iy = . Consider the linearized Oskolkov equations on a two-edge graph

10u1t — Ultgx = Ulgz,
10u2t — Ugtgx = U2gx,

conditions (2), (3) will take the form

ul((),t) = UQ(O, t),
le(ﬂ', t) = O,
ng(ﬂ', t) = O,

le(o, t) + u2$(0, t) =0.

Eigenfunctions and eigenvalues of the Sturm-Liouville problem on the indicated graph

would be found
( X!+ AX; =0,

X5+ AXy =0,
Xi(lh) = X»(0),
Xi(h) = X5(0) =0,
X1(0) =0,

X5(ly) = 0.

\

2
The Sturm-Liouville problem on the indicated graph G has eigenvalues Ay = < thflz) ,
k = {0} UN, which correspond to the following eigenfunctions

k k
Xk () = (XT(2), X5(x)) = (Cwos( t x) ,Clcos( t (x+ll))) , k={0} UN.
ll + lg ll + l2
We consider the problem with a two-point initial-final condition

Z ((u(To) — o), X§) X* = Z {(u(r) —wr), XT) X* =0,

k:pp€ok (M) k:ppeok (M)
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when

1
Ué(M):{Mk:ﬂik‘>4},

1 41 41
L(M) = S A 7 S
ov (M) He= N ’ 10°39°9731'6

Uy = <5 sin(z + g) — 2, 5sin(4x + g) - 2) :

uy = (10 sin(z — g) +3,10sin(2c — g) + 3) .

Based on the data above, we obtained and realized the program for numerical solution
to problem (1) — (4) in the Maple 2017. The created program allows to find the approximate
solution to problem (1) — (4) on the geometrical graph at any initial data and at any values
of A\, v and display the graph of the approximate solution. In the program we can control
the accuracy of the Galerkin sum coefficients. The algorithm built into the Maple 2017
algorithm for solving the system of differential equations and other built-in operators and
algorithms were also used in the implementation of the algorithm.

Describe the algorithm in more detail. Each block of the algorithm corresponds to one
step:

1 step. After the beginning of the program execution to enter the number of components
of the Galerkin sum N, coefficients A, v, initial conditions u,, 7,, the number of graph
edges and their length.

2 step. Generation of an approximate solution and optimal control in the form

gt x) = Y ar(t)X§(x)

k=1

uy(t, ) = Z an(t) XF(z)

k=1

respectively, where X* is orthonormal in the sense of Ly(G) family of eigenfunctions of the
Sturm-Liouville problem on a graph G [11]. Substituting the form of the solution into the
Oskolkov equation, scalarly multiplying the differential equations obtained in the previous
step by the functions XF, XF k =1,..., N, compiled a system of differential equations
we obtain a differential equation for unknowns a(t).

3 step. For each edge, to constitute multipoint initial-final conditions for the system of
equations.

4 step. The degeneracy condition of the system of equations is verified. If it does not hold,
then we have a system of ordinary differential equations.

5 step. Initial functions for each edge to decompose in the Galerkin sum, based on them, the
initial conditions for the system of equations to obtain at the previous step are determined.
6 step. The resulting system of homogeneous differential equations with initial data to solve
by the method embedded in the Maple 2017 package.

7 step. The solution obtained for each edge to display on the screen as a function and as
a graph.
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We obtain a solution of the form

u(t) = Y e g, XE) e Xg + Y e g, XF) e XY
prETk (M) prE€at (M)

The solution to this problem is seen in the figures. The resulting graph of the change

in speed at the intersection.
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Fig. 3. Edge 1 Fig. 4. Edge 2
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YNCJIEHHOE UCCJIEJOBAHUE MATEMATUYECKOM MO/JEJIN
TPAHCIIOPTHOTI'O ITOTOKA

A.C. Konxuna, HOxH0-YpaybCKuil roCy/IapCTBEHHBIN YHUBEPCUTET, T. e/ Isa0nHCK,
Poccuiickas Peepartiust

[Tpobsiembl pacupeiesieHrsi TPAHCIIOPTHBIX IIOTOKOB SIBJISIFOTCSI B HACTOSIIIEE BPEMS aK-
TYaJIbHBIMU B CBA3U C YBEJIUYEHUEM TPAHCIIOPTHBIX cpencTB. B 50-e Tozpl mpoImioro seka
HOSBUJIMCH II€PBbIE MAKPOCKOIUYEeCKUe (IMUAPOJAUHAMUIECKUE) MOJEJH, B KOTOPBIX TPAHC-
[OPTHBIA IIOTOK YIIOI00/ISIETCsl TIOTOKY <MOTHBUPOBAHHON> CXKUMAEMOM KUIKOCTH. Pamee
U3ydaJicsl MOJIX0, B OCHOBE KOTOPOro Jjiexkut cucrema Hapbe — CToKca, rie TpaHCIOPTHBIH
IIOTOK yIIOM00JIsIETCST HECXKUMAEMON YKUJIKOCTH, W, KaK CJIeJICTBUE, PACCMATPUBAIOTCS TUJI-
poJmHaMuYecKne Mojesu. JJis MOJIe/TMpOBaHUsT TPAHCIIOPTHOIO MMOTOKA B JAHHOW pabore
OymeM paccmarpuBaTh ypaBaeHus OCKOJIKOBa Ha reoMeTpudeckoMm rpade, rje pebpo nme-
€T J[Ba MOJIOXKUTEJbHBIX 3HAYEHUsI, OTBEYAIONINX €r0 <JJINHE> U <IHPUHE>. Be3yCca0BHO,
B KOHTEKCTE MATeMATHIECKOW MOJE/IM BeJIMYUHBI [ U by Ge3pasMepHBbI, OJHAKO JIjIs Ha-
IJISITHOCTH YI0OHO MPEJCTABIISTD, YTO [, M3MepsieTCsl B JIMHEHHBIX METPUIECKUX €INHUIAX,
HAIPUMED, KUJIOMETPAX WA MUJISAX, & BOT by PABHO KOJUYECTBY MOJIOC JIBUYKEHUS HA TIPO-
e3xkell yacTu B 0siHy cTOpoHy. JljIsT paccMaTpuBaeMoil MOJIEJIN TIOCTABJIEHO HEKJIACCHIECKOe
MHOTOTOYEYTHOE HAYaIbHO-KOHEedHOe ycjioBue. V3yuerne Takoil Mojesm Oy/1eT MpOBOIUTHCS
C UCIOJIb30BAHUEM HJEW W METOJOB TEOPUHU ypaBHeHWiI coOOJIEBCKOro Tuiia. B jmaHHOIT pa-
60Te ONMUCHIBAETCS YNCJIEHHBIN SKCIIEPUMEHT Ha OCHOBe MeToja 'ajiepKuHa Jjist ypaBHEeHUs
OCKOJIKOBa C MHOT'OTOYEYHBIM HAYAJIbHO-KOHEYHBIM yCJIOBAEM Ha Tpade.

Karuesvie caosa: YypasHeHUA OC?CO,/L?COSCL,’ eeOMempu%ecmuﬂ 2pa¢; MHO20MOYEYHOE
HAYANDHO-KOHEYHOE YCAOBUE;, MPAHCTOPMHILE NOMOKU.
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