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In iterative methods of computed tomography, each iteration requires to calculate a
multitude of sums over values for the current reconstruction approximation. Each summable
set is an approximation of a straight line in the three-dimensional space. In a cone-beam
tomography, the number of sums to be calculated on each iteration has a cubic dependence
on the linear size of the reconstructed image. Direct calculation of these sums requires
the number of summations in a quartic dependence on the linear image size, which limits
the performance of the iterative methods. The novel algorithm proposed in this paper
approximates the three-dimensional straight lines using dyadic patterns, and, using the
adjustment of precalculation and inference complexity similar to the adjustment employed
in the Method of Four Russians, provides the calculation of these sums with a sub-quartic
dependence on the linear size of the reconstructed image.

Keywords: computed tomography; algebraic reconstruction; fast Radon transform; fast
Hough transform; Method of Four Russians.
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Introduction

Computed tomography (CT) is a measuring and computing method to estimate
the internal structure of a three-dimensional object according to the results of X-ray
penetration through the object. Today, CT is one of the most powerful methods of
nondestructive testing. CT is most commonly used in medical diagnostics [1-3|; however,
CT is also used in industry to detect hidden defects and to control the quality of
assembly [4], in geology to study rock characteristics [5,6], in archeology and paleontology
to study the internal structure of petrified objects [7], etc.

The core of the CT method is to estimate a spatial distribution of an X-ray attenuation
coefficient in the object according to the set of projections measured at successive X-ray
probing at various angles. In this case, probing can be made with parallel or cone X-ray
beans; using either monochromatic or polychromatic radiation. According to the above-
mentioned factors, CT data pre-processing methods are changed, as well as numerical
methods of the reconstruction itself. The most popular group of reconstruction methods
includes integral approaches, the mathematical tools of which are based on the property
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of invertibility of Radon transformation. The classical methods of this group include the
filtered back projection method and the Fourier synthesis method [8-10]. The methods of
the second group are based on the application of algebraic approaches. In this case, the
CT problem is reduced to the iterative solution of the given algebraic equation [11-14],
where each voxel of the reconstructed image is considered as an independent variable.
Probabilistic and statistical approaches are included into a separate group of methods.

An important feature of algebraic methods is a possibility to work particularly with a
highly noisy and/or fragmentary data, e.g., received during scanning an object at a small
number of angles [15-17]. Development of algorithms working under such conditions is
especially urgent due to the necessity to decrease scanning time. Decrease in registration
time leads to decrease in the radiation dose received by the patient during a medical
examination, as well as increase in the reconstruction accuracy with time resolution (the
so-called “4D tomography” [18]).

However, algebraic methods of reconstruction are weaker than integral methods with
regards to the speed of image reconstruction, their asymptotical complexity worsens as
the reconstructed image resolution increases. The latter fact becomes more important due
to the fast growth of resolution enhancement of measuring equipment. Nowadays, the
efforts to improve the operation time of algebraic methods are developed in two different
directions. First, expand simultaneously used computation capacities with features for
parallelism (e.g. [19]). Second develop new reconstruction algorithms having a lower
computation complexity (e.g. [20]).

In iterative methods of computed tomography, each iteration requires to calculate
the so-called ray sums, which are the sums of values of the current reconstruction
approximation for a set of lines, corresponding to a measurement scheme in use. In
cone-beam tomography in order to reconstruct an image of the linear size n, a total
of ©(n?) ray sums is calculated at each iteration. Note that a set of lines for which the
calculation is performed can be changed depending on the operation mode of the device,
but asymptotics of the power of the set is not changed. The direct calculation of such ray
sums requires O(n') summations. This fact limits the performance of the iterative methods
and prevents their wide propagation. A novel algorithm proposed in this paper performs
calculation of these sums using only ©(n*/n) summations. The algorithm is based on the
following two ideas. First, we replace of discrete lines with dyadic patterns. Second, we use
Method of Four Russians to balance precalculation and direct recalculation. The Ershov
algorithm for dyadic patterns [21] allows to simultaneously sum the values along ©(n?)
dyadic patterns in a three-dimensional image with a n side using ©(n?) summations.
The algorithm [21] is a generalization of the fast Hough transform algorithm, which is
used in various computer vision problems [22]. Some mentions on the existence of such
computational scheme were made in the earlier work by Donoho and Levi [23]|. However,
the algorithm itself was presented and described for the first time in [21]. This work also
shows that dyadic patterns are deviated from a geometric prototype for not more than
% log,n in the worst case, which is quite acceptable for tomographic images, where n
rarely surpasses 4096. But, unfortunately, the Ershov algorithm does not allow to get a
faster response if the number of the required sums decreases. Therefore, the application of
the Ershov algorithm gives the same asymptotic complexity as direct calculation. In this
paper, we propose an algorithm, which is the result of applying the so-called Method of
Four Russians to the Ershov algorithm. The Method of Four Russians [24] was introduced
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in 1970 by V.L. Arlazarov, E.A. Dinic, M.A. Kronrod, and [.A. Faradjev for the problem of
multiplication of boolean matrices, and for its equivalent problem of finding the transitive
closure of a graph. The main idea of the method is to split the matrices into strips for
which the multiplication is performed using consructed lookup tables, and the width of
the strips is determined by adjusting the lookup table construction complexity with the
complexity of calculating the final multiplication result. The same idea of separation and
adjustment of the precalculation and the inference parts of the algorithm will be used in
this paper. We show that if the Ershov algorithm is stopped at the k-th iteration, where
k = log, +/n, then such precalculation requires ©(n®y/n) summations whereupon every
line can be summed using the sums already calculated for sections by /n operations.
Therefore the total complexity is ©(n3\/n) for ©(n3) straight lines.

The paper is organized as follows. Section 1 describes mathematical background of the
computer tomography problem. We give series of steps, which, in case of a monochromatic
probing, linearizes the problem, i.e. allows a transition from the measured values to the
ray sums. Next, for a polychromatic probing, the notion of an average X-ray attenuation
coefficient is introduced; the paper shows that in the case of a definite approximation of
tomographic projection formation model the reconstruction problem can also be made
linear. Section 2 presents a fast X-ray sum calculation algorithm when discrete lines are
replaced with dyadic patterns. We describe the Ershov algorithm, which does not allow to
decrease the computational complexity of direct calculation of ©(n?), if ©(n?) ray sums are
calculated. Next,we propose a new algorithm, which allows to decrease the total complexity
from ©(n?) to ©(n3y/n) when calculating ©(n?) ray sums.

1. Mathematical Background of the Computer Tomography
Problem

If a parallel scheme (Fig. 1) is implemented to collect tomographic projections, then
reconstruction can be performed layerwise. Let us focus on the parallel scheme and define
the problem of tomography on a plane. Consider a fine X-ray beam of the photon energy E
passing through the section of a generally non-homogeneous object and attenuated in this
path (Fig. 1). Suppose that the X-ray beam is registered by the ideal detector, i.e., the value
of the registered signal is exactly equal to the number of photons reaching the detector. In
this case we ignore the scattering process and the secondary re-radiation processes. The
structure of the object is given by a spatial distribution of the linear attenuation coefficient
w(x,y), which describes the object capability to attenuate the X-ray energy radiation E.
If Iy is the intensity of the induced beam, then the value of the registered signal I is
calculated according to the Bouguer—-Lambert—Beer law:

(e 9]

I(p, ) = Iyexp —/,u(pcos¢—lsin¢,psinq§+lcos¢)dl ,

—00

where (p, ¢) are normal coordinates of the registered beam, and the absorption outside
the object is considered to be zero.

The problem of computer tomography is to reconstruct the spatial distribution of the
linear X-ray attenuation coefficient based on a set of projections registered with certain
resolution and at various angles. By the ray sum S we mean an integral of the attenuation
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coefficient for the probing direction. Write the expression that connects the value of the
ray sums and the value of the signal I:

o0

Iy
S(p,¢) =1n = /,u pcos ¢ — lsin @, psin g + [ cos ¢) dl.
o=y = ) )
The further situation is complicated X-ray

if polychromatic radiation is wused for
probing. In commercial medical and
industrial ~ tomographic  scanners, a
broadband spectrum is used. The linear
X-ray attenuation coefficient depends
on energy. It means that if radiation is
polychromatic, then various components
of radiation are not similarly attenuated
by the object. Besides, the detectors of
most tomographic scanners are not energy-
dispersive, i.e., the detectors register an
integral signal, and the distribution of Position sensitive
radiation in quantum energy seems to detector

be lost. In this model, the expression,

which interconnects the value of the Fig. 1. Schematic diagram of formation of

registered signal and the distribution of tomographic projection in a parallel circuit
the attenuation coefficient, is changed as

¢
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follows:
I(p,¢):/IO(E)exp —/,u(pcos¢—lsin¢,psin¢+lcos¢,E)dl X(E)dE,
0 —00

where x(F) is the detector sensitivity to quanta with the energy FE.

If the dependence of absorption on the quantum energy during reconstruction is
ignored, then cupping artifacts appear in the reconstructed image [25]. There exist several
approaches to solve this problem, including processing of the reconstructed images [26].
Attempts to create mathematically correct reconstruction methods for the polychromatic
mode seem to be more interesting. Therefore, the paper [27| shows that, in approximation
of the only material of the object, there is measured data mapping, which allows to
use linear reconstruction methods and to obtain the results which are not corrupted by
artifacts. Efforts were taken to create methods of multicomponent reconstruction [28|,
which can be used when the object contains two types of areas differing in composition. In
this case, the reconstruction problem is solved in relation to weight fractions of chemical
elements comprising the sample while the main model still remains linear.

If the function S(p, ¢) is known in all points, then the tomography problem is solely
reduced to the problem of conversion of Radon transformation. The filtered back projection
method implements the operation of conversion of Radon transformation for the finite
number of measurements S and gives good results if the number of projection angles
coincides with the order number of linear dimension of the restored image, and the
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measurements are equally spaced for both p, and ¢, with the projection angles covering the
whole circumference. There is no such simple and accurate integral method for a cone-beam
scheme; instead, approximation integral methods, such as the Feldkamp method, are used.
In medical applications, the case of a small number of angles is of special interest due to
a limited radiation burden. It is turn while in non-destructive examinations of long length
objects. The case of a limited angular range is of interest. In all the above-mentioned cases,
an algebraic approach does not require any modification, since the approach reduces the
tomography problem (in the two-dimensional case) to the solution of the following linear
equation system:

{ > ulwy) = S(pi ),
i (

z,y)EL(pi,¢i)

where L(p, ¢) is a set of pixels of the reconstructed image, which approximates the straight
line with the normal coordinates (p, ¢). In a cone-beam scheme, the system is written in a
similar way. In the algebraic approach, the function p is defined iteratively; i.e., multiple
calculation of ray sums with reference to the current approximation of p is required. Next,
we show how this operation can be speeded up by an algorithm in a general case.

2. Fast Algorithm of Simultaneous Calculation of a Large Number
of Ray Sums in the Three-Dimensional Case

Discrete straight line approximation on a plane can be performed by several methods.
Let us refer to the [t| < 1 lines as of the type y = - + s preferentially horizontal,
and refer to the other lines as preferentially vertical. If discretization for the first type
is implemented, then discretization for the second type can be obtained by conjugation.
The most popular way is the method when every column of the image of a preferentially
horizontal line includes the matching pixel which is the nearest one from this column
(considering a roundoff). Such discrete lines are often erroneously called Bresenham’s
lines after the author of the famous computer graphics algorithm that does not use
multiplication. In 1992, P. Brady introduces another recursive discretization method for
n = 2P, where p is an integer. The method is sometimes called approximation with a
dyadic pattern [21].

Patterns of this type are characterized by a large number of form coincident line
segments having different slope angles. For example, patterns beginning in the same point
and having the slope ¢, which differs by one, coincide at the half-length (see Fig. 2). The
use of memorization of general sub-sums and elimination of doubling calculations allow
summing up the image along all possible preferentially horizontal dyadic patterns from
t > 0 for n?log, n summations. In general, for all dyadic lines, the number of operations
is 4 times larger.

Among other things, the paper [21]| proposes a similar algorithm for lines in the three-
dimensional space. In order to construct the algorithm, the lines are divided into three
types. Each type is attributed to one of the rectangular coordinate system axes with which
the line has the smallest angle (Fig. 3). Let us consider the lines which are preferentially
directed along the vertical axis z3. Such a line can be uniquely given by the points (s1, sq,0)
and (s; + t1,82 + to,n — 1) that belong to the opposite sides of the cube. Depending
on the signs of the parameters ¢; and ¢, determined with reference to the axes of the
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horizontal plane, the lines of the same type are divided into four subtypes. Fig. 3 shows
the example, when both signs are positive, i.e. the line belongs to the I7/-th subtype.
Note that dyadic patterns approximate the lines with an error increasing with n. In [21],
it is shown that for the value % log, n, the upper limit belong to the maximum deviation
of a three-dimensional dyadic pattern from the geometrically exact line. For n = 4096, it
makes only 2v/2 of the voxel. Moreover, though the worst absolute coordinate error of such
approximation increases with n, the worst relative coordinate error quickly decreases.

For the lines of the same type, the
Ershov algorithm requires less than 2n?
summations, therefore the total number
of the lines with integral values of the
parameters (i, So,11,t2) is estimated as
24n* summations. It is unexpectedly good -
result, since each of the lines effectively
requires only 2 summations irrespective
of the length though such result fails to
speed up ray sum computation because the wn
naive algorithm has the same complexity.
This is because the FErshov algorithm
basically calculates sums along all the
lines rather the required lines only. We
show how the Ershov algorithm may
be modified considering the fact that
algebraic reconstruction algorithms require
calculation of ©(n?®) rather than ©O(n')
sums.

Consider separate iterations of the
algorithm described in [21]. Initially, the
original three-dimensional image having
the size n X n x n includes sums for
all possible dyadic patterns having the >0
length 1 (i.e., all separate voxels of
the three-dimensional image). Next, at
every i-th step of the algorithm, where 0
i € {1,2,...,k}, we calculate the sums
considering the dyadic patterns of the
length L = 2°, with the complexity of the
i-th step equal to ©(n? - 2). After the k-
th step, where &k = log, n, we calculate the
sums for all the dyadic patterns of the length n, and the algorithm stops (see. Fig. 4).

The complexity of all the steps of the algorithm is as follows:

Fig. 2. Two dyadic patterns in a two-
dimensional space with slopes differing by
one

Fig. 3. Parameterization and typification of
dyadic lines in the three-dimensional space

Zi

On? -2 +0(n3 -2 +0(n*-2%) + ...+ 0(n* - 2992") = O(n? - 2'%2") = O(n?),

which is not better than the direct calculation of the required ©(n?) X-ray sums.
Nevertheless, let us consider the modification of the algorithm which stops calculation
at the z-th step, where x < log, n whereupon the required ©(n?) ray sums are additionally
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Fig. 4. Logical representation of steps to expand the Ershov algorithm

calculated using the obtained sums against the dyadic patterns having the length 2*. In
this case, the complexity of the calculation of every sum is O(z;) = O(2le2"=7) Now, we
apply the complexity precalculation and recalculation adjustment principle which is similar
to that implemented in the algorithm of Four Russians to search for optimal division of
the matrix, i.e., we find step index x at which the total complexity of calculation for steps
0,1,...,x of the algorithm [21] and the complexity of calculation of the required ray sums
coincide:
Om3 -2 +0(n?-2Y + ...+ 0(n*-2%) = O(n® . 2082""),

1
O(n?-2%) =0(n* - 28" ") = g = 5 log, n = log, v/n.

For the optimal z = log, v/n, the total complexity of calculation ©(n?) of the required
ray sums is as follows:

O(n® - 21°82V") = O (n3/n).

Conclusion

The important advantage of algebraic methods of tomographic reconstruction is their
ability to work with very noisy and/or incomplete data, which is important when radiation
dose limitations are imposed. In this case a disadvantage of the algebraic methods is their
high calculational complexity. The novel ray sum calculation algorithm presented in this
paper allows to decrease the time for one iteration of an algebraic method to ©(n®/n),
where n is a linear size of the reconstructed image. This result was achieved owing to
application of the Method of Four Russians developed by V.L. Arlazarov, E.A. Dinic,
M.A. Kronrod and I.A. Faradjev to the Ershov algorithm. Taking into account that the
constant associated with the complexity of the described algorithm is close to one, and
considering a reconstructed image of size n = 4096, we can obtain roughly 64 iterations
of an algebraic method for the same time as the most popular integral reconstruction
method, Feldkamp algorithm, which has a complexity of ©(n*). Thus, it can be considered
a breakthrough in the performance of algebraic tomography methods. Note that this
advantage is accompanied by the increase in the requirements to RAM from O(n?) to
O(n3y/n) to store the precalculated sums. Decreasing these requirements could significantly
expand the applicability of the new algorithm in practice; it is an apparent direction for
further studies.
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B urepannoHHbIX METOIAX KOMIIBIOTEPHON TOMOrpadui Ha KaXK 10l urepanuu Tpedyer-
cst pacdeT OOJIBIIIOrO YHCJIa CYMM 3HAYEHUN TEKYIIEro MPUOIMKEHNsT PEKOHCTPYKINH, IIPH-
geM KaxkJI0e CyMMUPYEeMO€e MHOXKECTBO IPHUOJINKAET TY WIA UHYIO IPAMYIO B TPEXMEPHOM
npoctpancTse. [Ipn KoHEHYIECKON cxeme COOPKU TOMOTpahpUIecKUX MPOEKIINi KOJTUIECTBO
CyMM, KOTOpOE HeOOXOJIMMO PAaCCUUTATH Ha KaXKJIOH UTepaI aJIrOPUTMa, KyOUYecKn 3a-
BUCHT OT JIMHEHHOTO pas3Mepa PEeKOHCTPyUpyeMoro m3obpaxkenusi. [Ipsimoii pacuer Takoro
qucja CyMM TpeOyeT KOJMYEeCTBO OIepalluil, KOTOpOe HAXOAUTCS B ITOJMHOMUAJIBLHON 3a-
BUCHMOCTH Y€TBEPTOH CTEIleHU OT JIMHEHHOTO pa3Mepa H300PaKeHHUsl, 9TO OrPDAHIMINBAET
OBLICTPOIEHCTBIE UTEPAIMOHHBIX METOMOB. [IpemaraeMblit B JaHHON paboTe HOBBIM aJro-
PUTM HCIIOJIb3YeT TPUOJIMIKEHNE TPEXMEPHOM IPSIMON U INIECKIM [IaTTEPHOM ¥, UCIIOJIb-
3ysl BRIPDABHUBAHNE TPYIOEMKOCTEN IIPEIIoACIeTa U BhIBOIA, AaHAJOIMIHOE IPUMEHSIEMOMY
B METO/I€ YeThIPEX PYCCKUX, [TO3BOJISET JOCTUYD [TOJIMHOMUAILHON 3aBUCHMOCTH OT Pa3Mepa
n300paKeHusi MEHbIIel CTEIeHN, 9eM YeThIPE, IIPU PACCIeTe HEOOXOIUMBIX CYMM.

Karouesvie €a06a: KOMNLIOMEPHAL MOMODAPUSA; AN2EOPAUMECKAA PEKOHCMPYKUUA,
bvicmpoe npeobpasosarue Padona; bvicmpoe npeobpasosarnue Xaga; memod wemwvper pyc-
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