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This paper investigates the possibility of effective implementation of calculations in low-
precision neural network models on the Elbrus platform with the VLIW architecture. Such
models are widely used in practice to increase the computational efficiency of recognition
and well suit computers with the x86 and ARM architectures. In this paper, we consider an
8-bit neural network model, in which matrix multiplication is the most resource-intensive
part of the implementation. This paper presents an effective implementation of matrix
multiplication that takes into account the features of the Elbrus architecture: the presence of
several computational channels with various arithmetic and logic devices, an array prefetch
buffer, and its own SIMD extension. We carry out theoretical and experimental comparisons
of the computational efficiency of low-precision and classical neural network models, which
show that Elbrus processors have much more capabilities for performing fast floating point
calculations and require the development of new approaches to increase the computational
efficiency of neural network models.

Keywords: low-precision neural networks; computational efficiency; Elbrus architecture;
matrix operations.

Introduction

Artificial neural networks are widely used for solving pattern recognition problems.
Many modern recognition systems use neural network models, for example, when
recognizing documents or license plates [1-5]. Improving the accuracy of the models often
requires complication of their structure and leads to a decrease in computational efficiency.
At the same time, the scope of recognition systems is steadily growing and the requirements
for their computational efficiency are increasing, therefore the problem of improving the
inference speed of neural network models is extremely urgent for mobile or embedded
devices and solutions that use complex high quality neural network models [6-8].

One of the latest approaches to the development of highly efficient neural network
models is the quantization of weights and intermediate calculation results with a moderate
decrease in recognition accuracy. Such methods allow to use small-sized integer types for
the calculations and increase the computational performance on a number of x86, x86 64
and ARM processors. For example, the gemmlowp [9] and qnnpack [10] software packages
provide efficient implementation of matrix operations on 8-bit integers for various processor
architectures. This operation takes the majority of computational time for the most neural
networks. Further studies show that it is possible to use 4-bit models without significant
recognition accuracy loss in a number of cases [8,11] and speed-up recognition inference
even more.
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The research in the area of low-precision (with 1-8 bit coefficients) neural networks
is actively conducted and it seems to be a promising area of machine learning. However,
the main goal of these studies is to create a computationally efficient neural network
model with an accuracy comparable to that of the original single precision model. The
majority of the studies are implicitly based on some assumptions about the computing
device architecture. For example, operations on integer data are considered to be more
productive than operations on floating-point numbers. Therefore, it must be taken into
account that the effectiveness of such methods strongly depends on the architecture of
the device. In this paper, we consider processors with very long instruction word (VLIW)
architecture Elbrus [12], that have special features and are well optimized for floating-point
computations. We have to design low-precision matrix multiplication, because existing
optimized packages do not suit the Elbrus architecture. In this paper we create and
investigate the efficient implementation of matrix operations for a 8-bit neural network
model for Elbrus processors and compare the computational efficiency with optimized
floating-point implementation.

1. Matrix Operations in Artificial Neural Networks

Modern models of artificial neural networks vary considerably: from the relatively
simple AlexNet [13,14] to variations of the Inception architecture [15] and deep recurrent
neural networks [16,17|. However, despite noticeable differences, modern neural network
architectures massively use convolutional layers of various sizes and spent most of the time
into convolution calculation.

Let us inspect a convolutional layer of a neural network. Each convolutional layer
performs a convolution of an input image with a set of filters, adds bias and applies a
nonlinear activation function. The input of the layer can be a multichannel image, such
as a color image. Filters can also be multichannel, because they contain coefficients for
each input channel. The output of convolutional layer can be described by the following
expression:

O(z,y) = ZZZI(c,x+Ax,y+Ay)w(c, Az, Ay), (1)
c Az Ay
where (z,y) is the point of the output, O is the output of convolution, ¢ is the channel
number, [ is the input image, w is the matrix described the filter (see Fig. 1).

After the convolution, the bias b is added and the non-linear activation function ¢ is

applied:

O/($, y) = 90(0(]:7 y) + b)a (2>
where O’ is the final output of the convolutional layer and ¢ is an activation function,
such as a rectifier (ReLLU), hyperbolic tangent, etc.

Normally the architecture of a neural network does not involve complex activation
functions, and the main computational complexity is connected with the convolution of
the input image with a set of filters.

In [18] a computationally efficient implementation of the convolution is presented as a
single operation of matrix-matrix multiplication. The authors present convolutional filters
in the form of a matrix in which each row corresponds to one filter, all of its coefficients
are placed sequentially. Then a matrix is formed from the input image. In the matrix one
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I(c, x,y) w (c, Ax, Ay) O (x,y)
CxXxY
* —

Fig. 1. Convolution of a multichannel image with one C' x X x Y filter

filter application corresponds to one column i.e. input image coefficients are multiplied by
the filter coefficients. The number of columns is equal to the number of outputs of one
convolution filter, i.e. the number of terms in the sum (1). Here the authors use interleaved
order of elements, i.e. write the first element of the first channel of the filter (or image),
then the first element of the second channel of the filter (or image) and etc.

Such implementation allows to reduce execution time by using various optimizations
of the matrix multiplication operation, for example, efficient memory access, Single
Instruction Multiple Data extensions (SIMD-extensions), which can perform an operation
on the vector of packed numbers simultaneously, and other parallelization capabilities of
modern processors.

The model under consideration uses 8-bit unsigned integer coefficients, which are
converted to 16-bit ones before multiplication. A 32-bit accumulator is used for addition.
Therefore, overflows in the calculations are excluded and the resulting sum of products is
correct for any input data.

2. The Elbrus Architecture

Elbrus is a microprocessor architecture with a very long instruction word. It means
that the Elbrus processor is able to execute several elementary commands in one cycle
and these commands together form one very long instruction word. Their formation takes
place exclusively at the compilation stage of the program is performed by the optimizing
compiler. It is able to perform comprehensive analysis of the source code and schedule
instructions for computing devices more efficiently than a hardware instruction scheduler,
much more time and compiling resources are available since at the compilation stage
[19-21].

In the architecture VLIW principle is supported by using 6 sets of arithmetic logic
units (ALU) for each processing core (each with its own instruction pipeline). We refer
to each set of units as computing channel. These channels are not identical, because each
channel contains arithmetic logic units supporting only some of the available operations.
For example, the addition of integer values is supported by all channels, while the majority
of vector operations performed on numbers packed in wide registers (SIMD commands)
are available only on two channels. It means that the use of vector operations is not always
justified in terms of computational efficiency.

With the development of the Elbrus architecture, ALU capabilities were sligntly
changed. Table 1 shows an information on basic computing operations for various versions
of the instruction set (IS). The length of a machine word is assumed to be 32 bits.
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Arithmetic logic devices parameters depending on the instruction set version

Instruction set

3 4 D
Processors Elbrus-4S Elbrus-8S, Elbrus-8SV
Elbrus-15+
SIMD register width, bits 64 64 128
Number of channels supporting the instruction / latency in cycles
Integer add (64 bits) 6/1 6/1 6/1
Floating point add (64 bits) | 4/4 6/4 6/4
Integer multy (32x32 — 64 | 4/4 4/4 4/4
bits)
Floating multiply add (64 | 4/8 6/8 6/8
bits)
Integer add (register) 2/1 2/1 2/1
Integer ~ multiple  with | 2/2 2/2 2/2
pairwise add (register)
Byte shuffle (64 bits) 4/1 4/1 4/1
Unpack (register) 2/1 2/1 2/1
APB load data 4/5 4/5 4/5

Table 1

In addition, the Elbrus architecture provides hardware support for fast memory access
via a hierarchical cache system and an array prefetch buffer (APB). APB provides fast
loading of n-linear arrays stored in the main memory of a device. Unlike a cache, which is
aimed at prefetching frequently used data, APB optimizes access time of arrays that are
used a small number of times and are processed sequentially. APB usage has the following

limitations:

e APB can be used in the absence of function calls during its utilization;

e in IS of versions 3 and 4 APB can only be used when working with aligned data,
however, this requirement is relaxed in IS 5 and will be completely removed in IS 6.

Note that APB is effective

e with a sufficiently large number of iterations of the cycle in which APB is accessed;

e when accessing array elements spaced apart are no more than 32 bits;

e in the absence of memory conflicts of write operations between iterations, or with a
sufficiently large distance of such dependencies.

3. An Approach to Efficient Matrix Multiplication

Implementation for the Elbrus Architecture

Computationally efficient implementation of matrix multiplication should provide the
maximum load of the processor ALUs, as well as the loading of the necessary data from the
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Fig. 2. a) Left operand matrix packing, b) right operand matrix packing

memory before the computation, since this time can be by times longer than the execution
of elementary arithmetic operations. A distinctive feature of matrix multiplication is the
fact that the same matrix element can be used to calculate several elements of the result.
Therefore, [22] proposes an approach to loading matrix elements depending on matrix
sizes and parameters of the memory subsystem. The main idea is to process the matrices
by blocks, and the sizes of the blocks are selected such that one block fits in the level 1
(L1) and level 2 (L2) caches, respectively. This idea allows to provide fast access to the
elements of the matrices and use the elements repeatedly to calculate the contribution of
these elements to the whole block of the result.

In this paper, we use this algorithm with the only difference being that the elements
were packed inside the matrix block (see Fig. 2). The goal of the packing operation is to
ensure the optimal order of elements for their subsequent loading into registers and using
vector commands from SIMD-extension. Packing needed to be done only once for each
block, therefore its complexity is linearly depended on the number of matrix elements.
In addition, the packing solves the problem on unavailability of APB due to arbitrary
alignment of the addresses of matrix elements. To this end, we place additional zero
elements to reach the nearest multiple of 8 (for 64-bit registers) for multiplication operands
and the multiple of 2 for the result.

The proposed algorithm can be written in pseudocode as follows:

for bl, in block, (rhs):

packed, < pack_rhs(bl,)
for bl; in block;(1hs):
packed; < pack_lhs(bl;)
packed_res < pack_res(bl,.)
kernel (packed_res, packed;, packed,)
bl,.s < unpack_res(packed_res).

Here 1hs and rhs are the left and right operands of matrix multiplication, respectively,
block; (.) and block,(.) are the methods to separate matrices 1hs and rhs into blocks.
The methods pack_rhs and pack_lhs implement block packing, pack_res implements
result packing, unpack_res implements result unpacking. The method kernel performs
computations on packed blockes and writes the result in a packed result block.

The pseudocode of the kernel method is given below:

for j in 0, ..., cols / nr

{dst0, dstl1} < next result block
for i in 0, ..., rows / mr
for ¥k in 0, ..., depth / 2
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bl, < next block of rhs

bl; < next block of lhs

lhs < pshufb(zero, bl;, 0x0901080009010800LL) ;
rhsO <« punpcklbh(zero, bl,);

rhsl <« punpckhbh(zero, bl,);

dstO < dstO + pmaddh(rhsO, 1lhs);

dstl < dstl + pmaddh(rhsl, 1hs);

// Handle the resting elements.

Here pshufb is an instruction of shuffling elements according to the rule, punpckhbh
is an instruction of packing two high parts of 16-bit registers, punpcklbh is an instruction
of packing two low parts of 16-bit registers, pmaddh is an instruction of long multiplication
of 16-bit registers followed by pairwise addition of the products.

In the main cycle of the program, we perform loop unrolling in order to minimize
memory accesses through the use of registers. The size of the processed result block is
nr X mr = 12 x 8.

As a result, one iteration of the main loop take 8 cycles and processes 48 elements
of the result. For real multiplication the duration of one iteration of the cycle is 8 clock
cycles for IS 3, since the data is loaded by 14 APB commands, and the calculations are
performed for 48 fmadd instructions, which are distributed over 8 wide commands.

Table 2 shows time measurements for multiplication of two 8-bit matrices using
the proposed method and optimized floating-point multiplication on Elbrus-4S. Each
measurement is averaged over N = 10° iterations.

Table 2

Multiplication time for A and B the matrices under the proposed method and optimized
EML package

A size B size Time of the | EML time, ms
proposed method,
ms
16x9 9x100 0,04 0,01
16x9 9x400 0,15 0,04
16x25 25x400 0,18 0,06
16x144 144x400 0,29 0,20
16x400 400x400 0,62 0,50
16x400 400x1600 2,57 2,07
32x400 400x1600 4,57 3,94
32x800 800x1600 13,91 11,88
32x800 800x2500 14,05 11,90

It is obvious that, for Elbrus-4S, the implementation of integer matrix multiplication
does not exceed the highly optimized material implementation in speed. It is happened due
to the additional cost of data packaging. For subsequent generations of Elbrus processors,
this gap will only worsen due to an increase in the number of ALUs working with floating
point numbers.
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Conclusion

The paper considers the widely used modern approach to reducing the inference time
of neural network models, more specifically, the use of integers to store weights and
intermediate results. However, despite the fact that this approach is effective for a number
of modern devices, the approach is based on the properties of a specific microprocessor
architectures and is not general. Therefore, the Elbrus architecture is specially optimized
for floating-point computing and provides up to 6 64-bit floating-point ALUs, while ALU
for vector integer operations (64 or 128 bit) is available only on 2 of the 6 processor
channels. We propose, the implementation of integer matrix operations, which is used in
neural network models with integer 8-bit coefficients and 32-bit intermediate calculation
results. This implementation turned out to be comparable in computational efficiency
with an optimized floating-point implementation for processors with IS 3 (Elbrus-4S),
but does not exceed such an implementation for processors with IS 4 and 5 (Elbrus-
8S and Elbrus-8SV) based on a theoretical assessment of their performance. Therefore,
Elbrus architecture devices perform well in problems involving floating-point data, but
may require special approaches when it comes to integer calculations. It means that in
order to increase the computational efficiency of neural network models on such computers,
approaches that use floating-point data in low-precision types |7] or reduce the structural
complexity of neural network models [6] are more relevant. However, at the same time, the
use of integer calculations can be justified to reduce the amount of memory required to store
a neural network model, as well as to improve performance by placing all model coefficients
and the input image in the cache (in case of small models) or random-access memory
(in the case of complex models with hundreds of millions of parameters). Therefore, the
given implementation, takes into account the features of the Elbrus platform and can find
application in embedded systems with hard-fixed parameters of the calculator or in server
applications that need to process a lot of data efficiently using various neural network
models.
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OCOBEHHOCTU PEAJIUSAIIN MATPUYHBIX OIIEPAITUIA
B MAJIOBUTHBIX HEMIPOCETEBBIX MOJIEJIIX
HA IIJIAT®OPME SJIbBPYC

E.E. Jlumonosa'?, M.HU. Hetiman-3ade®, B.JI. Apaasapos
L®enepanbublit necaenoBarensekmit nenTp <MndopmaTuka u ynpasiennes PAH,
r. Mocksa, Poccuiickaga Penepaliusd

2000 «Cwmapt Dumkunc Cepsucs, . Mocksa, Poccuiickaa Penepanusd

3AO MIICT, r. Mocksa, Poccniickasa ®@enepars

B pabore uccremyercs Bo3MOXKHOCTD 3D DEKTUBHON PEATUIAIIH BBIUUCICHAN B MAJIO-
OUTHBIX HefipoceTeBbIX MOjesax Ha miaardopme ¢ VLIW apxurekTtypoit Dasbpyc. Takue
MOJIEJIN MUPOKO IIPUMEHSIFOTCSI Ha IPAKTUKE JIJIsI TOBBIIIEHNs] BBIYUC/IUTEIHHON 3D peKTrB-
HOCTH PACIIO3HABAHUS U XOPOIIIO HOIXOIST JJIsi BBIYUC/IATEE TAKUX apXUTEKTYP, Kak X806
u ARM. B nannoit pabore Obl1a paccMoTpeHra 8-OuTHasi HEIPOCETEBBIX MOJIE/b, B KOTOPOIt
HanboJjiee PECYyPCOEMKOIl 9aCThIO PEAJIMIAIIH ABJISETCA MATPUIHOE yMHOXKeHHe. B maHHoil
pabore npusenena 3 dEeKTUBHAS PEATUSAIIT MATPUIHOTO yMHOKEHIS, Y IUTHIBAIOIIAsT OCO-
OEHHOCTH apXUTEKTYPhl DJIbOPYC: HAJUYNEe HECKOJIbKUX BBIYUCIUTE/bHBIX KAHAJIOB C Pa3-
JIMYHBIMEA apU(PMETUKO-JIOTTIECKUME yCTpoiicTBaMu, Oydepa npeIBapuTe/IbHON MOIKAIKI
MaccuBoB u cobcrBennoro SIMD-pacmupenusi. [IpoBesieHO TeopeTHIecKoe U IKCIEPUMEH-
TaJbHOE CPABHEHHE BBIYUC/IMTEILHON NMPOU3BOAUTEILHOCTH MAJOOUTHONR M KJIACCHIECKOH
HEePOCeTEeBBIX MOJIe/Iell, MOKA3aBIlnee, YTO MPOMECCOPhl DIBOPYC UMEOT ropasjio OoJbIie
BO3MO2KHOCTEH /IJ1s1 BBIIIOJIHEHUS OIITUMAJILHBIX BENECTBEHHBIX BEIYUC/IEHN U TPEOYIOT pa3-
pabOTKU HOBBIX ITOJIXOJIOB K IOBBINIEHUIO BEIYUCIUTEILHON 3P (HEKTUBHOCTH HEHPOCETEBBIX
Mojeseit.

Karouesvie caosa: marobummnie HEUPOHHDBIE CEMU; BLUUCAUMENHASL IPHERMUBHOCTID;

apTUMERMYpPa Av0PYc; MaAMpPUYHBLE 0ONEPAYUUL.
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