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In this paper, we propose a SUSUPLUME air pollution as a modern application of the
classical Gaussian plume model. The presented model takes into account meteorological
conditions and parameters of the pollution sources. The classical model is supplemented by
the equations of motion of the center of mass of a single emission. A numerical study has
shown that in stationary weather conditions the presented model qualitatively coincides
with other known models. The results of calculating the concentrations of pollutants do
not contradict the obtained values based on the official methodology for calculating the
maximum concentrations of pollutants approved for usege in the territory of the Russian
Federation. The SUSUPLUME model contains a number of identifiable parameters and it
can be adapted to real conditions. The computational model consists of two blocks: a block
for recording measurement information and a block for calculating the concentrations of
pollutants. The measurement information registration unit has a low labor intensity (over a
million registrations per second). The pollutant concentrations calculation block is laborious
(400 points of calculations per second). Concentrations are calculated independently, it
allows to use parallelization of the computational process in the future.
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Introduction

At present, the problem of air pollution in large cities is extremely acute. For example,
in Chelyabinsk, up to one third of days per year the maximum permissible concentrations
of pollutants are exceeded [1]. In this situation the issue of identifying sources of air
pollution becomes particularly relevant. The existing methods for monitoring the state
of atmospheric air based on empirical methods for calculating the concentrations of
pollutants [2] do not meet the current needs. The deployment of an extensive network of
physicochemical air condition monitoring and the use of modern methods of mathematical
modelling allow taking into account the variety of pollution sources in large cities, as
well as the peculiarities of meteorological conditions formed under the influence of urban
development and life.

Air pollution models can be divided into: empirical, computational fluid dynamics and
semi-empirical models. Models are also distinguished by the scale of the computational
grid: mesoscale models (grid spacing at least 10 km), as well as microscale models (grid
spacing about 2 meters). Mesoscale models are used to calculate weather changes, e.g.

WRF/LSM/Urban modelling system [3], NU-WRF model [4], WRF/Chem-NCSU scale
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transport [5, 6] and WREF /hem-ROMS [6] and others. Microscale models are used to
calculate air pollution of a city, street, enterprise, for example, the WACFD-RANS model
which was applied in Madrid to two different areas of the city [7-10]. On the basis of
empirical models, the Russian official methodology for calculating MRR-2017 [11] has been
developed. Such models are well applicable for calculating quasi-stationary processes, for
example, when the time of movement of pollutants is insignificant compared to the time of
their release. The disadvantage of such models is their “rigid” structure and a large number
of simplifications, which undoubtedly leads to inaccuracies in the calculation. Moreover,
the introduction of additional correction factors does not increase their accuracy [12].
Compared to other models, computational fluid dynamics models allow to take into
account complex flows in an urban environment, air flow around obstacles on a micro
scale, and much more. For example, the WACFD-RANS model used in Spain [7-9| or the
TAPM model developed and used in Australia [13, 14]. CFD models look very promising,
but they have one significant drawback. The calculation of these models requires significant
computational resources. Semi-empirical models have found wide practical application in
calculating air pollution in an urban environment. The most widespread is the Pasquill-
Gifford model [15], which is based on the hypothesis of the normal distribution of the
pollutants concentration along spatial coordinates. This model was recommended in 1986
for the creation of national local models for IJAEA member countries [16]. In Russia,
national models DV-2010 [17] and NPO Typhoon [18, 19] were developed to calculate the
propagation of radionuclides. Although the Pasquill-Gifford model was developed in the
50s of the last century, it has not lost its relevance up to the present time, in view of
its simplicity and ability to adapt to local problems. In this paper, numerical modelling
is presented within the framework of the SUSUPLUME model proposed by the authors,
which is based on the classical Gauss model, supplemented by the equations of motion
of the center of mass of a single emission. The motivation for the development of the
model was the creation of a toolkit for an industrial enterprise, which allows calculating
the concentration of pollutants within the boundaries of the sanitary zone to improve
emission control. The main attention was paid to solving the key problem of constructing
a tunable model for specific parameters of plant emissions, in contrast to the widely used

AERMOD [20] and CALPUFF [21] models recommended by the US EPA.

1. Model of Air Pollution from a Point Source

Consider a point pollution source. Let it be located in the coordinates (x;, y;, h;), i =
1, N, where x;,1; are coordinates in meters in the horizontal plane. The X axis is directed
from West to East, and the Y axis goes from South to North, h; is the height of the mouth
of the pollution source above the earth’s surface in meters, 7 is the number of the pollution
source, IV is the total number of point sources. At each moment of time let us know the
wind in the horizontal plane. Let u () be the projection of the wind speed on the X axis
and v (t) be the projection of the wind speed on the Y axis.

Consider a single emission of pollutants during rather small time period At. Let
us describe the motion dynamics of the center of mass for the single emission. Let
x; (to, ), yi (to, 1), zi (to,t) be coordinates of the single emission from the i-th source at
time ¢, that left the source mouth at time ¢y3. Then the movement of the center of mass of
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the single emission in the horizontal plane is described by the relations
t t
to to

On the vertical axis, the emission is influenced by the forces of gravity, Archimedes
and viscous friction. Write down the corresponding second Newton’s law

mgzz (t07 t) = _mgg + meg — :umgzl (t()a t) ) (]‘>

where m, is the mass of the single emission, m, is the mass of displaced air, p is the
viscosity coefficient, which describes the dependence of the medium resistance to the
movement of the single emission. Now write the ideal gas equation for the single emission
and displaced air volume. Since the pressures of these gases coincide, then

my

M,

Mg

RTg:ﬁ

RT,,

where T, is the air temperature, T, is the temperature of the single emission, m, is the
mass of displaced air, M, is the molar mass of air, M, is the molar mass of the single
emission, R = 8,314 J - K~ - mol™! is the universal gas constant. Hence

M,T,
Y= . 2
mg MgTa ( )

m

Since the exhaust temperature Tj, can be different from the ambient air temperature 7, the
exhaust cooling process takes place simultaneously. This can be described by the relation

Ti(t07t> :V(Ta_Ti(tO?t))’ (3>

where T; (to,t) is the temperature of the single emission from the i-th source, « is the
coefficient characterizing the rate of emission cooling depending on external conditions.
Taking into account (3), as well as the initial discharge temperature 7; at the moment of
leaving the source, we can write

T, = T; (to,t) = T, + (T; — T,) e t=10), (4)

Substituting (2) and (4) into (1), we get

. M, o ]
myZi (to, t) = —mgg +my g (Ta +(T; = T,) e tO)) — umyz; (to,t) .

M,T,
Therefore
. M, M, (T, =T, g )
(to,t) = [ 2 — 1 et W T emvtt) g (tg, 1)
Z (07 ) (Mg ) + MgTa € pz (07 )
Introduce the notation a = —u, b = <%‘; — ) g, c= % Taking into account that

zi (to,t) > 0, the solution to equation (1) can be written as

Zi (to, t) = Inax [éz (to, t) ,0] s
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where

L c b c ealt=to) _ 1
2 (o, t) = hy — ————— + (w; + — + +
;1) Tlat ) G” 2 <a+w>( ” )

ce =) b (t —ty)

RRTCE R
h; is the height of the i-th source mouth, and w; is the initial vertical velocity of the single
emission when leaving the i-th source mouth.

Concentration ¢; (z,vy, 2, to, t) at point (z,y, z) at time ¢, created by the single emission
with a center of mass at point (x;(to,t),y;(to, 1), zi(to,t)) is described by a certain
distribution characterizing the diffusion process of the single emission. In the ideal case,
this process is described by the heat conduction equation or explicitly

m

_ ( (25(t0,)=2)°  (vi(to,)=v)> | (zi(t0,t)—2)° )
(&

g 202 (t—t() 202 (t—tg) 202 (t—tg)

(2m)* 2o, (t — to)oy(t — to)o.(t — to)

éi (xaya Z7t07t) -

I

where o, (t — to), 0y (t — to) , 0, (t — to) are functions that describe the expansion dynamics
for the “cloud” of the single emission. To take into account the earth’s surface, introduce
a virtual source for each point source, which has coordinates (x;,y;, —h;). Then the
concentration distribution from a point source will be described as

C; (l‘7y7zat07t) = éz (xaya Z7t07t) + éz (%?Ja _Zat()at) .

The concentration generated by the source can be calculated as

t

Cz' (xayaz7t>: /Ci (xayazat(]at)dth (5)

— 00

where C; (z,y, z,t) is the concentration created by the i-th source at the point (z,y, 2)
at time ¢t. Then the pollutant concentration at a given point at time ¢ is determined as

follows
N

C(z,y,z,t) = ZC} (x,y, 2,1).

i=1

2. Numerical Implementation of the SUSUPLUME
Air Pollution Model

It is assumed that data on meteorological conditions are received discretely with
step t,. For the numerical integration algorithms to work, the values u (t) and v (t) are
approximated by piecewise linear functions.

For dispersion functions o, (t —ty),0, (t —ty),0. (t —ty) we consider two sets of
functions: the Pasquill-Briggs functions [23] and the MESOPUFF [24] functions, where

the relation .
z(t, ty) = / Vu(s)? 4+ v(s)’ds
to

is used to estimate z.
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Table
Dispersion functions for different models
Atmospheric | Pasquill-Briggs model MESOPUFF model
stability
category
A 00 () = 0y (&) = 0,328 (1 + 525) ", | 00 (&) = 0, (&) = 0,362,
0.(2) = 0,247 \/% 0. (&) = 0,00023622"
B 00 () = 0y (8) = 0,228 (1 + 525) ", | 04 (2) = 0, (&) = 0,253%,
0.(7) = 0,24\ /1 + & 0:(%) = 0,0582%%
C 0, () = 0, (8) = 0,328 (1 + 525) ", | 04 () = 0, (&) = 0,193,
o.(z) =0,22 o.(2) =0,112%
D 00 (2) = 0 (2) = 0,162 (1 + 525) 7, | 00 (2) = 0, () = 0,133,
0.(2) = 0,148 (1 4+ )" 0.(&) = 0,572
E 0, (2) = 0, (8) = 0,112 (1 + 525) ", | 04 (2) = 0, (&) = 0,0962°7,
0.(2) = 0,088 (1 + )" 0.(2) = 0,852
F 00 () = 0y (&) = 0,112 (1 + 525) ", | 04 (&) = 0, (&) = 0,0632°,
0.(#) = 0,08 (14 =)™ 0.(2) = 0, 77304

In (5), the lower limit of integration is —oo, but in practice, we are interested in
calculating the concentration in a limited area near pollution sources. We assume that if
the center of mass of the single emission is located far enough from the area of interest, then
its contribution can be neglected. Suppose that the minimum wind speed for which the
developed model can be applied is w,,;,, and the size of the concentration calculation area
is D, then in time %,,,, = % the single emission will leave the concentration calculation
area. Accordingly, (5) can be written as

t

Oi ('r?y?Zat) - / & (x7y727t07t) dtO (6>

t__2D_

Umin

To calculate (6) numerically, we use the modified Romberg’s method [25]. The modification

consists in the fact that the segment of integration [t — uw ;t| is divided into several

subsegments and the integral is calculated on each segment by the Romberg’s method
until the specified relative error ¢ is reached. Let the integral be calculated on the segment
[a; b]. The integration algorithm is presented below.

Step 1. Put ¢ = 0. Calculate the scores Iy, [1 ¢ using the formula

_b—a|f@)+ ) 270 f(a+ kb2)

lio =~ 5 + =00 (7)
k=1
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Step 2. Put i =1, j = 0. Calculate the scores I; ; using the formula

Lij—Tiay . . .
[Z'JJrl = [Z,] + ﬁ, 1= O, 1, Y O, .., MIn (2, 5) (8)
Step 3. If the condition
‘Ii,min(i,k’)) — Ii—l,j—l} <e ‘]i,min(i,s))} 9)

is satisfied, then the algorithm is completed. Otherwise, go to step 4.
Step 4. Put i =i + 1, calculate the estimates ;o by formula (7).
Step 5. Calculate the estimates I; ; for all j = 0, ..., min (¢, 5) by formula (8). Go to Step 3.
Typically, the maximum permissible concentration of the main pollutants is at least
1073 mg - m~3. To calculate the concentration of pollutants with an accuracy of 1%, the
required accuracy for calculating the integral (6) is e = 1078, Determine the number of
segments into which it is necessary to split the segment of integration from the following
computational experiment.
Let one source be 10 m high, wind speed be 10m/s (Western), emission intensity be
1g/s. Calculate the concentrations using formula (6) on a 5%5m grid for z € [0; 1000] (the
emission does not spread upwind), y € [0;100] (the concentration will be symmetrical).

The height of the concentration calculation is z = 2 meters. To calculate the exact integral,
2D

Umin

we use the Romberg’s method on the entire segment [t — ;t] with initial number of

points equal to 100,000 and accuracy of calculation € = 1072,
The experimental results (Fig. 1) show that it is necessary to split the segment

[t e t] into 23 subsegments, which is 49, 19 s per segment, to achieve the integration

Umin
accuracy 107%. Romberg’s method completed its work by calculating the objective function
every 0,3 s.
From a computational point of view, the model consists of two blocks. The first
block registers the measured values such as wind direction and strength, etc. Since the

concentration calculation requires data for a limited uQ—I_) length, a circular buffer is used to

min
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Fig. 3. Pollutant concentration along the Fig. 4. Pollutant concentration along the
X axis (y = 0) Y axis (z =41,1)

accumulate information. This allows information accumulation operations to be performed
in O(1) time. The second block calculates the pollutants concentration at the given points.
Calculations of the pollutants concentrations at different points are independent and can
be performed in parallel on different computers. The average time for calculating the
concentration at one point from one source is about 107 s on an Intel Core 2 Duo T8300,
2,4 GHz processor for one subsegment.

3. Investigation of the SUSUPLUME Model

Let’s consider a model situation. One point pollution source 10m high is located
at point (0;0). The source emits nitrogen dioxide (M, = 46) with intensity equal to
1g/s, temperature equal to 300°C' and velocity equal to 3m/s. The wind is considered
to be constant with speed equal to 3m/s, West. Consider atmospheric class — “D”; air
temperature 27°C'. Let us choose the Pasquill-Briggs functions as the dispersion functions
(Table). Parameter values are v = 0,1, u = 1,0. Let’s calculate the concentration (Fig.
2) at a height of 2 m for the area [0;400] x [—200;200]. The maximum concentration is
reached at the point (49, 1;0) and is equal to 1,5 107%g - m=3.

Let us compare the obtained concentration values with the maximum calculated values
calculated in accordance with [2]. Construct sections through the point (49, 1;0) along the
X-axis (Fig. 3) and Y-axis (Fig. 4).

Now compare the concentration distribution calculated using the SUSUPLUME model
and results of the official MRR-2017 method used in the Russian Federation. The maximum
concentration according to the MRR-2017 technique (Fig. 5) is achieved at the point
(41,1;0). Qualitatively, the SUSUPLUME model repeats the concentration dynamics,
however, quantitatively it may differ from MRR-2017.

The calculated values of concentrations according to the model do not exceed the values
specified in the normative document. In this case, the MRR-2017 model does not take into
account the type of substance that is emitted. Let us consider how the concentration of
pollutants for sulfur dioxide will change (M, = 64).
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In this case, the maximum concentration value exceeds the value calculated by the
MRR-2017 (Fig. 6). Let us consider the possibility of ensuring a decrease in the calculated
concentration due to the correct selection of the ~, p parameters. Let’s assume that v, u €
[0;4,6]. With v = p = 4,6, the single blowout will decrease vertical speed by 99% in
1 second and decrease temperature by 99% in 1 second in relation to the environment.

Consider such pairs (7y; 1) for which the inequality H[laX ](c (2,0,2) = Coppr(2,0,2)) < 0.
z€[0;200

The allowed range of parameters is shown in Fig. 7.
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concentration value does not exceed the Fig. 8. Pollutant concentration for
MRR-2017 model data identified parameters

Let v = 0,003714 and p = 1,66310, then the calculated concentrations are shown in
Fig. 8. The maximum concentration of sulfur dioxide fits into the calculation according to
MPR-2017, however, with the given parameters, the concentration of nitrogen dioxide has
dropped sharply.
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Let us calculate the concentration of pollutants for the dispersion functions
MESOPUFF (Table) for the initial conditions (Fig. 9, 10).
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Fig. 9. Concentration of pollutants for Fig. 10. Concentration of pollutants for
different dispersion functions (along the different dispersion functions (along the
X axis) Y axis)

Using the MESOPUFF functions simulates a distribution that is much “squeezed” on
the Y axis and more “smeared” on the X axis. The identification of the dispersion function
0z,0y,0, in the presence of a large number of measurements, will improve the quality of
modelling the air pollution.

When identifying model parameters on real data, it is necessary to identify the
parameters 7, u, and also take into account that the dynamics of the center of mass
of the single emission is determined by the parameters of the gas-air mixture M,, w,

which are also subject to identification.

4. Advantages and Disadvantages of the Proposed Model

The constructed model makes it possible to simulate the dispersion of pollutants
taking into account the real measurement of the wind over time. In addition, the model is
able to take into account the type of emitted substance, the current season (through the
ambient temperature), the possibility of parallelization when calculating the concentration.
The disadvantage of the constructed model is the considerable time for calculating the
concentration and the lack of taking into account the local movement of air masses.
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YN CJIEHHOE NCCJIEJJOBAHVE MOJEJIN SUSUPLUME
PACITPOCTPAHEHU Y SATPASHAIOIIINX BEIITECTB
B ATMOC®EPE

C.M. Eacaxos', /I.A. posun', A.B. I'epenwmetin', T.I. Kpynnosa',
C.I Huuxkasa', T.FO. Oaenvuxosa', A.A. 3amvrursesa'

1Ok mH0- Y pasibeKuii rocyIapeTBeHHbIH YHNBEPCUTET, T. JeIa0mnHCK,

Poccuiickas @eiepartiust

B nacrosimeii pabore npeiozkeHa MOAe/ b PACCEUBAHUs 3arPSI3HAIOIINX BEIIEeCTB B aT-
moceprom Bozyxe SUSUPLUME, npescrasiisitornast cob6oit MOAUMpUKAIINIO KJIACCHIECKO

Bectauk FOVYpI'Y. Cepusa <Maremarndeckoe MOAeJIMPOBAHUE 15
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Mozesu rayccosoro nuieiida (Gaussian plume model). IIpeacrasiennas Momiesb onuchbBaeT
JUHAMUKY DaCCEedAHUsl C yIEeTOM Pa3/IMIHBIX (PAKTOPOB: METEOPOJIOTHIECKOH OOCTAHOBKH,
[IapaMeTpPOB UCTOYHUKA 3arPA3HEHUs. ¥ DABHEHUS KJIACCUIECKON MOJIEJIN JIOIOJHEHBI yPaB-
HEHUSIMU JIBUYKEHUS IIeHTPa MaCC eIMHUIHOIO BbIOpoca. Uuc/IeHHOe uccjejoBaHue MoKas3a-
JIO, 9TO B CTAIIMOHAPHBIX METEOYCJIOBUSIX IIPEJICTaB/IEHHAS MOJIEJIb KAUeCTBEHHO COBITAIET C
JIPYTUMU U3BECTHBIME MOJIEJISIMHU. Pe3ybTaThl pacdeTa KOHIIEHTPAIUN 3arps3HSIOIMINX Be-
IIIECTB HE IIPOTUBOPEYAT IOy I€HHBIM 3HaYeHnsAM Ha ocHOoBe meroguku MMP 2017, yrsep-
K JIEHHOM K IpUMeHeHuIo Ha Tepputopun Poccuiickoit @emepammu. Moeab TakKe COIepPKUT
psif, IeHTU(DUIUPYEMBIX [IAPAMETPOB, C IOMOIIBIO KOTOPBIX OHA MOXKET ObITh aJallTHPO-
BaHA K PeajibHBIM YCJOBUSIM. BBIYUCIUTEIBHO MOJEIh COCTOUT U3 JIBYX OJIOKOB: OJIOKA pe-
TUCTPAIMN U3MEPUTEIbHON nHpopManyuyu 1 6JI0Ka pacdera KOHIEHTPAINI 3arpA3HsIIONIIX
BemrecTB. BJIOK perucrpaiun m3MepuTesbHOM HHPOPMAIMA UMEET HU3KYIO TPYIOEMKOCTH
(cBBIIIIE MUJUIMOHA PErucTpanuii B ceKyHy ). BJIoK pacdera KOHIEHTPANMI 3arPA3HSIONIIX
BEILECTB UMEET BBICOKYIO TPYA0eMKOCTh (0K0s10 400 TOYeK BBIYMC/IEHHI KOHIEHTDAIMU B
CEeKYHJIy ), HO IOCKOJIbKY BCE KOHIEHTDAIMU B MPEJICTABJICHHON MOJEIN PACCUUTHIBAIOTCS
HE3aBUCHMO, TO 3TO MO3BOJIAET B IIEPCIEKTHBE HCIOJb30BATH PACIAPAJIJICIMBAHUE BBIUNC-
JINTEJILHOTO IIPOIIECCa.

Karouesvie crosa: modeab pacnpocmpanenus 362PA3HAINUUT BEUELCTNE; 24YCCOBA MO-

deaw; memod Pombepaa.
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