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Of concern is an initial-boundary value problem for the modified Boussinesq equation
(IMBq equation) is considered. The equation is often used to describe the propagation of
waves in shallow water under the condition of mass conservation in the layer and taking into
account capillary effects. In addition, it is used in the study of shock waves. The modified
Boussinesq equation belongs to the Sobolev type equations. Earlier, using the theory of
relatively p-bounded operators, the theorem of existence and uniqueness of the solution
to the initial-boundary value problem was proved. In this paper, we will prove that the
solution constructed by the Galerkin method using the system orthornormal eigenfunctions
of the homogeneous Dirichlet problem for the Laplace operator converges *-weakly to an
precise solution. Based on the compactness method and Gronwall’s inequality, the existence
and uniqueness of solutions to the Cauchy—Dirichlet and the Showalter—Sidorov—Dirichlet
problems for the modified Boussinesq equation are proved.

Keywords: modified Boussinesq equation; Sobolev type equation; initial-boundary value
problem; Galerkin method; *weak convergence.

Introduction

Let Q@ C R™ be a domain with the boundary 92 of class C*° and T" € R,. In the
cylinder C'= ) x (0,T), consider the modified Boussinesq equation

A= A)uy —*Au+u* =0, (z,t) €Qx(0,7) (1)
with homogeneous Dirichlet boundary condition
u(z,t) =0, (z,t) €0 x(0,7T) (2)
and initial Cauchy conditions
u(z,0) =up(x), w(zr,0)=u(x), x€Q, (3)

where A\, € R. The equation has many applications in various fields of natural science.
For example, it simulates wave propagation in shallow water, taking into account capillary
effects. In this case, the function u = wu(z,t) determines the wave height. In monograph
[1] a linear mathematical model of wave propagation in shallow water is constructed. A
(modified) mathematical model of wave propagation in shallow water in a one-dimensional
region was investigated in [2| and a soliton solution of equation (1) was obtained. The
existence of a unique global solution to the Cauchy problem for equation (1) was proved
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[3] for A =1, = 1. In [4], a similar solution was obtained for describing the interaction
of shock waves.
The following generalized Pochhammer—Cree equation was considered in [2]

Uty — Uttzr — (f(u))m =0,

where f(u) is a rational function of w. This equation is used to describe the propagation
of a longitudinal strain wave in an elastic rod. In [1] and [2], a solution in the form of
solitary waves for the Pochhammer—Cree equation

1

Ut — Uttgg — Ugax — ]_9 ((up))xx = 0’

with p = 2, 3,5 was constructed and was numerically investigated the interaction of two
solitary wave solutions. For f(u) = aju + ayu® + azu® and f(u) = aju + azu® + asu® in
[5], explicit solitary wave solutions of the last equation were obtained using method of
reduction to an algebraic equation. The bifurcation behavior of the phase portraits for the
corresponding traveling wave equation was also investigated. Under various parametric
conditions, all explicit formulas for solutions with a solitary wave and solutions with a
kink wave were obtained in [6]. Also in [6], an initial-boundary value problem for the

generalized Pochhammer—Cree equation

Ut — Uge — Uggt — Ugatt = (f(u>>xx ’

where f is a non-decreasing function from {f € C*¥*1(R) : f(0) = 0} was studied. Under
an additional condition on f(u) the authors proved the existence of a global solution.

In all the works listed above, an essential condition is the continuous invertibility of
the operator at the highest derivative with respect to t. However, the operator A — A can
be degenerate. Equations that are not solvable with respect to the highest time derivative,
according to [7] are called Sobolev type equations.

Using the theory of p-bounded operators developed by G.A. Sviridyuk and his disciples
[8, 9], it was shown in [10] that in appropriately chosen spaces the problem (1) — (3) can
be reduced to the initial value problem

uw(0) = ug, u(0) =1uy (4)
for an abstract semilinear second-order Sobolev type equation
Lii — Mu+ N(u) =0, (5)

where wu, % are the first and the second derivatives with respect to t, L = A\ — A, M =
oA, N(u) = u3. Then, using the phase space method, a theorem on the existence of a
unique local solution was proved. It was also noted that in the case of monotonicity of the
operator N, the phase space would be a simple manifold.

Equation (1) belongs to the class of high-order Sobolev type equations [11, 12]|. Sobolev
type equations are closely related to algebraic-differential equations [13, 14]. Nowadays,
more and more often the theory of Sobolev type equations is transferred from bounded
domains in the space R™ to geometric graphs [15] and to the space of differentiable k-forms
on Riemannian manifolds [16]. Many physical phenomena [17-19], as well as technical and
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economic processes [20] are modelled using Sobolev type equations. This explains the
enduring interest in them.

The paper is structured as follows, firstly we introduce some preliminary information,
then we investigate the existence of a solution to (1) — (3) using the Galerkin and
compactness methods [21]|. In the next section, we prove the uniqueness of the solution
based on the embedding theorem and Gronwall’s inequality. In conclusion, a remark about
the Showalter—Sidorov problem and a recommendation for choosing a system of basis
functions are made.

1. Preliminary Statements

Definition 1. Let X be some Banach space, X* the dual space for X with respect to
the duality (-,-). The sequence f, € X* is called weakly-* converge to f € X*, if for any

g€ X, {fu9) = (f,g) forn — .

Generally speaking, *-weak convergence is weaker than ordinary weak convergence,
however, if X is a reflexive Banach space, then *-weak and weak convergence are equivalent.

Lemma 1. [21] Let O be a bounded domain in R} x R, g; and g be functions from Li(O),
1 < q < oo such that

91l Lacoy £ C, g1 = g a.e. in LI(O).

Then g, — g weakly in L1(O).

Lemma 2. (Courant Principle) Let H be a separable Hilbert space of nonzero dimension
and the operator A : H — H be a linear compact self-adjoint one. Since all eigenvalues of
A are real and finite-multiple, they can be numbered non-decreasingly

A <A< <A A S S <AL

Then, for any n > 1, the following relations hold:

A
A\, = inf sup ( l‘,]ﬁ)’
A
x#0
(Az, z)

A_, = sup inf R
Hioo L H, , |7l

x#0
where H,_y is an arbitrary (n — 1)-dimensional subspace in H.
Lemma 3. [21] If f € LP(0,T;X) and f € LP(0,T;X), 1 < p < oo (X is a Banach

space), then f, after perhaps changing on the set from the interval (0, T') with zero measure,
is a continuous mapping from [0,T] to X.

Lemma 4. (Gronwall’s lemma [22]) Let g(t) > 0 and f(t) > 0 for t > ty, and also
g, f € Clto, +o0], and fort > ty,c > 0 the inequality

o) < e+ / £(s)g(s)ds,
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be satisfied. Then the inequality

g(t) < ceo
holds. Moreover, if c =0, then g(t) = 0.

Lemma 5. (The Rellich-Kondrashov embedding theorem [23]) Let 2 C R™ be a domain
with a boundary of the class C*,s > 1, s > 1,1 <p < q < o0, s—% > — %. Then

S l .
W3(Q) € W, () completely continuous (compact).

Earlier, problem (4), (5) was studied by the methods of p-bounded operators theory.
Let X,Y be Banach spaces, the operator L € L(X;Y) (i.e., linear and continuous), and
the operator M € CL(X;Y) (linear and densely defined). The set

p"(M) ={pneC: (uL—M)" e L(Y;X)}

is called the resolvent set of the operator M with respect to the operator L (or, the L-
resolvent set of the operator M). The set C\p“(M) = o(M) is called the spectrum of the
operator M with respect to the operator L (or, the L-spectrum of the operator M).

Operator functions (uL — M)™" Rl = (uL — M)™'L, L} = L(pL — M)~" with the
domain pl(M) are called, respectively, resolvent, right resolvent, left resolvent of the
operator M with respect to the operator L (in short, L-resolvent, right L-resolvent, left
L-resolvent of the operator M).

An operator M is called (L, o)-bounded if

Ja>0Vu € C: (Jju| > a) = (u e p(M)).

Let the operator M be (L, o)-bounded. Then the operators
1 1
P=— [ RY(M)dX and Q = — [ L5(M)d\
o [ REOnavand @ = o [ 150
T T

are projectors in the spaces 4 and §, respectively. Here I' = {A € C : |A\| =7 > a}.

Definition 2. The set P is called the phase space of equation (5) if
1) for any (ug,uy) € TP (TP is the tangent bundle of P) there is a unique solution to

problem (4), (5);
2) any solution u = u(t) of equation (5) lies in P as a trajectory.
Moreover, the notation (ug,uy) € TR should be understood as ug € B and uy € T,,*B.

Let ker L # {0} and the operator M be (L,0) bounded, then, by the splitting theorem
[9], equation (7) can be reduced to an equivalent system of equations

{ 0= (I—-Q)(M + N)(u),
it = L' Q(M + N)(u),

where u! = Pu. Then the phase space 3 of equation (5) is the set [10]

P={uecl:IT-Q)(M+N)(u)=0}.

Thus, the existence of a unique local solution was proved.
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Every time when solving initial-boundary value problem for the Sobolev type equation
by the Galerkin method, there arises an algebraic-differential system of the following form

Ai = F(z), (6)

where z(t) € R™,m € N,;t € [0,T], rank A = k,k < m. Transform system (6) to a
first-order system introducing a new variable y(t) € R*™ and new matrix operators

o 2() (A O = (0 F()
y(t)_(x(t))’ A_(@I[)’ F_(H o )
Then we get B B
Ay = Fly), (7)
rank A = k + m. (8)
Split system (7) into two subsystems

0=Fy), 9)
QAy = F'(y), (10)
where F = PQF(y), F'(y) = (I — P)QF(y), the matrix @ is obtained from the identity
matrix by replacing the top rows with basis vectors of the left kernel (cokernel) of the
matrix A, P is a projector onto the left kernel of the matrix ()A. Therefore, the solution
to system (7) lies in the set 9 = {y € R*™ : FO(y) = 0}.
Let the function F' € C¥, s > 1, then the condition

rank (F°), =1, (11)

where (F?), is the Jacobi matrix of the function F° at the point yo has sense. Let there
exist yo € M such that condition (11) is satisfied in some neighborhood O(yg) N 9. Then
O(yo) NI is a C*-manifold and equation (9) can be reduced to the form

(F")5 =0, y(0) = yo. (12)
Suppose that
ker QA Nker(F°);, = {0}, (13)

in the neighborhood O(y,). Then the matrix QA+ (F°), 'is invertible in this neighborhood
and the system (10), (12) is reduced to the form

= (QA+ (F%),) " F', y(0) =, (14)

with a smooth right hand side.
By virtue of [13, Theorem 1], the following theorem holds:

Theorem 1. Let system (7) satisfy (8), F € C*,s > 1 and let there be yo € M such
that in some neighborhood O(yo) NI condition (11) and (13) are satisfied. Then for some
to > 0 there is at least one solution y € C*(0,to; M) such that yo = y(0). The set O(yo) MM
1s a C*-manifold of dimension 2m — | > k. For s > 2, the solution is unique.
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2. Existence Theorem

In some special cases of a nonlinear term in equation (1), one can not only answer the
question about the existence and uniqueness of a solution, but also find this solution. Let
us formulate and prove a theorem that answers the question on how to find a solution to
(1) - (3)

Further, we need several function spaces such as L*(Q), HZ(€). The operator L :
HY(Q) — H(Q) is given by formula

(Lu,v) = /(Vqu + \uv)dx.
Q

Denote B = L*(Q) N H}(Q2) and D = H*(Q) N coim L (where coim L = HY(Q) © ker L).

In addition, define spaces of distributions (functions with values in a Banach space)
L>(0,T; B) and L>(0,T; L*(Q2)). Construct the conjugate spaces using the Dunford-Pettis
theorem: (L>°(0,T; B))* ~ L'(0,T; L3 (Q) U H~1()) and (L*(0,T; D))* ~ L'(0,T; D).

Let A be the eigenvalues of the homogeneous Dirichlet problem (2) for the Laplace
operator, numbered nonincreasingly taking into account their multiplicity, and ¢, be the
corresponding eigenfunctions. In addition, the linear span of {1, @2, ..., @n} for m — oo
is dense in B and orthonormal (in the sense of the inner product in L*(9)).

Theorem 2. Let A € [\, +0), ugp € B anduy € D and (ug,uy) € T,,,*B. Then there exists
a solution to problem (1) — (3) u = u(x,t) such that uw € L>*(0,T; B) andu € L*(0,T; D).

Proof. The solution to problem (1) — (3) will be sought in the form of the Galerkin
approximation

um(t) =) a () (15)

k=1
We need to find the coefficients a}*(t) from the system of algebraic-differential equations
<Lum7 (Pk> - 042<Aum7 @k) + <(um>3’ 3016> =0, 1< k<m. (16)

Using the expansion of the initial functions in a series by basis functions, we obtain
the initial conditions for the system of algebraic-differential equations (16)

ai’(0) = B, 4 (0) =, 1<k<m, (17)

where ul' = > "¢ — ug in B when m — oo, and u* = Y "¢ — u; in L?(Q) when
m—oo. =
Apply Theorem 1 to problem (16), (17). Suppose A = A; then \; is an eigenvalue of

multiplicity 1. Let’s write out the matrices
< 0O O = I O = 0O O =
A‘(@ Lo ) P‘(@ Osms ) H_P‘(@ Lo ) @ =lam,
—a?apyy (1) = ((u™)®, ¢2)

eoo-ceron. oo SR |
—a2an(t) — (™), o)
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moreover, M = TP = {y € R?™ : F(y) = 0}. Each element of the matrices F°, F*
is a third degree polynomial in the variables a}, therefore FO € C* and F' € C*.
Thus, it is easy to check conditions (11) and (13) in a neighborhood contained in 9.
Thus, the conditions of Theorem 1 are satisfied, and hence there is a unique local solution
u™ =um(t,x), t € [0,t"].

Let’s get a priori estimates. Multiplying equation (16) by a*(t) (1 < k < m) and
summing over k from 1 to m, we get

(L™, 4™) — o*(Au™, 4™) + ((u™)?,4™) = 0. (18)

Introduce the norm in the space D (L*(Q) = coimL & ker L) |u|?,, = (L, u). By the
Courant principle, this norm is equivalent to the norm induced by the space H' ().

Using the self-adjointness of L, A, we obtain 2(Li™, 4™) = <4 (L™, 4™), 2(Au™, 4™) =
—L(Vu™, Vum), A((um)?, amy = %||um||i4(ﬂ), and equation (18) takes the form

d 1
o + a2, V) + Sl =0, (19)

Integrate it on the segment [0,t],¢t < t,,
©m|2 20, m||2 1 m||4 m|2 21, m|2 1 m||4
@™ [ + a7 lu HH& + 5”“ 2o < i[5 + o fug ’Hg + 5““0 [7a-
Since the right-hand side of the equality is bounded, the inequality
- m m 1 m
L e T A (A e (20)

take place. The constant C' is independent of t,, and therefore (20)holds for all ¢ € [0, 7.

Remark 1. Due to (20) the sequence of functions 4™ is bounded in the space L>(0,T; D),
u™ is bounded in L>(0,T; B).

Since u™ and 4™ are bounded in the spaces L>(0,T"; B) and L>(0,T’; D), respectively,

which are dual spaces to the separable Banach spaces L'(0,T; H~'(Q) U L*/3(2)) and
L'(0,T; D*), one can choose *-weakly convergent subsequences u™ and 4™ such that
u™ — u *-weakly in L>(0,T; B),
™ — 4 *-weakly in L>(0,T; L*(Q)).
Moreover, u™ is understood as a generalized derivative in the space of distributions. Also
from the boundedness of 4™ in the space L*(0,T; D) and ™ in L?(0,T; B) (by Remark
1 and the properties of Lebesgue spaces) it follows that «™ is bounded in H'(C'). By
Lemma 5, we have H'(C') C L*(C) (a completely continuous embedding). Therefore, we
can assume that

u™ — u strongly in L?(C) and almost everywhere. (21)

Since the sequence (u™)? is bounded in the space L>(0,T; L*3(Q)) , it converges to
some element z of this space

(u™)3 — z *-weakly in L*(0, T; L*3(2)) (22)
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Corollary 1. Put O = C, g, = (u™)3, g = u?, then by Lemma 1, as well as (21) and
(22) z = u?.

Now we can go term by term to the limit in (16), setting m;, = [. Let k be fixed and
[ >k, we get

(Lii!, i) + a(Vu', Vi) + ('), 1) = 0. (23)

By Remark 1, we have the limit transitions
(@', pr) = (u, pp) *weakly in L*(0,T);

(Vul, Vi) — (Vu, Vi) *-weakly in L°(0,T)

and therefore p
<ul7 @k) = %(ulv @kz) — <u7 @kz) *_Weakly in Loo(()?T)u

and by Corollary 1
(uh)3, or) — (u®, @p) *-weakly in L>=(0,T).

Thus, from (23) we deduce
d? 2 3
e (Lu, pr) + a*(Vu, Vr) + (u°, ox) = 0. (24)

In view of the density of the system of functions {¢y}7*, in the space B for m — oo, and
the arbitrariness of the choice of ¢y, the equality holds for an arbitrary v € B

d? 2 3

@(Lu, v) + o (Vu, Vo) + (u’,v) = 0. (25)

Due to the expansion of the initial values into a series u;(0) = u) — wup in H'(Q2) and
u(0) — u(0) in B, therefore u(0) = uo.
By Remark 1
(i, o) = (il, ) *-weakly in L>®(0,T)

and, therefore, taking into account Lemma 3, we obtain
(@(0), o) = (i(t), er)l=o = (0(0), ).

On the other hand, due to the expansion of the initial values into a series

(0(0), o) = (1, @)

Thus,
<U(0)7 @k) = <U1, @k)? vV k.

Therefore the function u = u(x,t) satisfies the equation and initial conditions, i.e. it is the
solution of (1) — (3).

O
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3. Uniqueness Theorem

Theorem 3. Under the conditions of Theorem 1 and Lemma 5, the solution to problem
(1) = (3) is unique.

Proof. Let u and v be two different solutions to problem (1) — (3), denote w = u — v.
Then equation (1) takes the form

A — A)wy — ?Aw = v* — u?, (26)
and the Cauchy conditions become homogeneous
w(xz,0) =0, wy(z,0)=0, wefl. (27)

Similarly to the previous section, equation (26) is reduced to the form (19). However,
instead of the standard norms of the spaces H' and H}, their equivalent, defined by the

rule |3, = (Lw,w), |w[3, = (o *Vw, Vw) is used.
0
d .o 2 3_ .3 :m
= il + ol | = 207 = ). (28)

Obviously
2®3—u3wm>§6/QWKWFJM5WMwa
Q

Using the Holder’s inequality, we estimate the right-hand side of the previous inequality

b/ﬁupUUVAUVNUNthfoCXthﬂhA+-MUFHLOHwHuﬂﬂﬂL%
Q

further, using embedding theorems and the properties of the norm, we obtain
Clllulllze + Mol pollwl pall 2 < C(lulze + |vf7a) [w] gl <

< Clw|glilm < 2C(|Jwlfp + [w]in).

Then (28) leads to the inequality

t
il + ] <20 [ (uly + fif)ds,
0

whence, by Lemma 4, we have the equality [w|%, 4 |w|3,, = 0. Therefore w = 0 and u = v.
0
O

Conclusion

Instead of the Cauchy condition (3) for problem (1) — (3), the Showalter—Sidorov
condition

L(u(0) —ug) =0, L(a(0) —uy) =0 (29)
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can be posed. Condition (29) is a natural generalization of the Cauchy conditions for
Sobolev type equations [24]. By construction of the conditions (29), the existence and
uniqueness theorem has less conditions.

Corollary 2. Let A € [A\j,+0), ug € B and uy € D. Then there is a unique solution to
problem (1), (2), (29) u = u(x,t) such that u € L>*(0,T; B) and w € L>*(0,T; D).

The number of terms in (15) should be chosen so that the linear span covers the kernel

of the operator L.

References

1.

10.

11.

12.

13.

Bogolubsky I.L. Some Examples of Inelastic Soliton Interaction. Computational Physics
Communications, 1977, vol. 13, no. 2, pp. 49-55. DOI: 10.1016/0010-4655(77)90009-1

Clarkson P.A., Leveque R.J., Saxton R., Solitary Wave Interactions in Elastic Rods. Studies
in Applied Mathematics, 1986, vol. 75, no. 1, pp. 95-122. DOI: 10.1002/sapm198675295

Wang Shubin, Chen Guowang. Small Amplitude Solutions of the Generalized IMBq
Equation. Journal Mathematical Analysis Applied, 2002, vol. 274, issue 2, pp. 846-866.
DOI: 10.1016/S0022-247X(02)00401-8

. Arkhipov D.G., Khabakhpashev G.A. New Equation for the Description of

Inelastic Interaction of Nonlinear Localized Waves in Dispersive Media. Journal
of FExperimental and Theoretical Physics Letters, 2011, vol. 93, no. 8, pp. 423-426.
DOTI: 10.1134/S0021364011080042

Zhang Weiguo, Ma Wenxiu. Explicit Solitary-Wave Solutions to Generalized Pochhammer—
Chree Equations. Applied Mathematics and Mechanics, 1999, vol. 20, no. 6, pp. 625-632.
DOI: 10.1007/bf02464941

Runzhang Xu, Yacheng Liu. Global Existence and Blow-up of Solutions for Generalized
Pochhammer—Chree Equations. Acta Mathematica Scientia, 2010, vol. 30, issue 5,
pp. 1793-1807. DOI: 10.1016,/S0252-9602(10)60173-7

Showalter R.E. Sobolev Equations for Nonlinear Dispersive Systems. Applicable Analysis,
1977, vol. 7, issue 4, pp. 279-287. DOI: 10.1080,/00036817808839202

Sviridyuk G.A., Sukacheva T.G. [Phase Spaces of a Class of Operator Equations|. Differential
FEquations, 1990, vol. 26, no. 2, pp. 250-258. (in Russian)

Sviriduyk G.A., Zamyshlyaeva A.A. The Phase Space of a Class of Linear Higher
Order Sobolev Type Equations. Differential Equations, 2006, vol. 42, no. 2, pp. 269-278.
DOTI: 10.1134/S0012266106020145

Zamyshlyaeva A.A., Bychkov E.V. The Cauchy Problem for the Sobolev Type Equation
of Higher Order. Bulletin of the South Ural State University. Series: Mathematical

Modelling, Programming and Computer Software, 2018, wvol. 11, no. 1, pp.5-14.
DOTI: 10.14529/mmp180101

Sviridyuk G.A., Zamyshlyaeva A.A. The Phase Spaces of a Class of Linear Higher-
Order Sobolev Type Equations. Differential Equations, 2006, vol. 42, no. 2, pp. 269-278.
DOI: 10.1134/S0012266106020145

Zamyshlyaeva A.A. The Higher-Order Sobolev-Type Models. Bulletin of the South Ural State
University. Series: Mathematical Modelling, Programming and Computer Software, 2014,
vol. 7, no. 2, pp. 5-28. (in Russian) DOI: 10.14529/mmp140201

Sviridyuk G.A. [On the Solvability of a Singular System of Ordinary Differential Equations].
Differential Equations, 1987, vol. 23, no. 9, pp. 1637-1639. (in Russian)

Bectauk FOVYpI'Y. Cepusa <Maremarndeckoe MOAeJIMPOBAHUE 35
u nporpammupoBanues> (Becruuk FOYpI'Y MMII). 2021. T. 14, Ne 1. C. 26-38



E.V. Bychkov

14. Chistyakov V.F., Chistyakova E.V. Linear Differential-Algebraic Equations Perturbed by
Volterra Integral Operators. Differential Equations, 2017, vol. 53., no. 10, pp. 1274-1287.
DOI: 10.1134/S0012266117100044

15. Zamyshlyaeva A.A., Lut A.V. Numerical Investigation of the Boussinesq-L&ve Mathematical
Models on Geometrical Graphs. Bulletin of the South Ural State University. Series:
Mathematical Modelling, Programming and Computer Software, 2017, vol. 10, no. 2,
pp. 137-143. DOI: 10.14529 /mmp170211

16. Shafranov D.E., Kitaeva O.G. The Barenblatt—Zheltov—Kochina Model with the Showalter—
Sidorov Condition and Additive “White Noise” in Spaces of Differential Forms on Riemannian
Manifolds without Boundary. Global and Stochastic Analysis, 2018, vol. 5, no. 2, pp. 145-159.

17. Manakova N. A., Bogatyreva E.A. [On a Solution of the Dirichlet—-Cauchy Problem for the
Barenblatt—Gilman Equation|. The Bulletin of Irkutsk State University. Series: Mathematics,
2014, vol. 7, pp. 52-60. (in Russian)

18. Bogatyreva E.A., Manakova N.A. Numerical Simulation of the Process of Nonequilibrium
Counterflow Capillary Imbibition. Computational Mathematics and Mathematical Physics,
2016, vol. 56, no. 1, pp. 132-139. DOI: 10.7868/50044466916010087

19. Sveshnikov A.G., Al'shin A.B., Korpusov M.O., Pletner Yu.D. Lineynyye i nelineynyye
uravneniya Sobolevskogo tipa |Linear and Nonlinear Sobolev Type Equation|. Moscow,
Fizmatlit, 2007. (in Rusian)

20. Keller A.V. On the Computational Efficiency of the Algorithm of the Numerical Solution
of Optimal Control Problems for Models of Leontieff Type. Journal of Computational and
Engineering Mathematics, 2015, vol. 2, no. 2. pp. 39-59. DOI: 10.14529 /jcem150205

21. Lions J.L. Sur Quelques Methodes de Resolution des Problemes aux Limites non Linears.
Paris, Dunod, Gauthier Villars, 1969. (in French)

22. Hartman P. Ordinary Differential Equations. New York, London, Sydney, John Wiley and
Sons, 1964.

23. Triebel H. Interpolation Theory, Function Spaces, Differential Operators. Berlin, VEB
Deutscher Verlag der Wissenschaften, 1978. (in German)

24. Sviridyuk G.A., Zagrebina S.A. The Showalter—Sidorov Problem as a Phenomena of the
Sobolev-Type Equations. The Bulletin of Irkutsk State University. Series: Mathematics,
2010, vol. 3, no. 1, pp. 104-125. (in Russian)

Received August 19, 2020

YAK 517.9 DOI: 10.14529/mmp210102

AHAJINTNYECKOE UCCJIEJJOBAHUE MATEMATUYECKO
MO/JIEJIN PACITIPOCTPAHEHU A BOJIH HA MEJIKOM BOJE
METOA0M TAJTIEPKUHA

E.B. Buiuxos, HOxu0-YpasbcKuii TOCy/IapCTBEHHBIN YHUBEpCUTET, T. Ue/I0nHCK,
Poccuiickas ®@enepariust

PaccmarpuBaercst HadasbHO-KpaeBasi 3ajiada JJjisi MOAUMDUIMPOBAHHOIO ypPaBHEHUsI
Byccunecka (ypasuenus IMBq). YpaBHeHHE 9acTO MCIOJIb3YETCs JJIS OIMMCAHMS PACIIPO-
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MATEMATNYECKOE MOJAEJIMPOBAHINE

CTPaHEHUs BOJIH HA MEJIKOU BOJI€ IPU YCJIOBUU COXPAHEHUsI MACCHI B CJIO€ U C y9IEeTOM Ka-
nWUIsIpHbIX 3 dexToB. Kpome TOro, 0HO UCIIOIB3YeTCs IPU UCCJIEIOBAHIY YIAPHBIX BOJIH.
MomudumnupoBantnoe ypaBHeHne ByccmHecKa OTHOCHTCS K ypaBHEHUSIM COOOJIEBCKOTO TH-
na. Panee, ncnosib3ysi TEOPUIO OTHOCUTEJIBHO P-OTPAHUYEHHBIX OIIEPATOPOB OBLIO JJOKA3aHO
CYNIECTBOBAHNE U €JIMHCTBEHHOCTH PEIICHUs HAYaJIbHO-KPaeBoil 3ajaun. B mannoit pabore
MBI JIOKaKeM, 9TO pellleHre, IIOCTPOEHHOe MeTOIOM | ajlepKuHa [0 CHCTeMe OPTOHOPMUPO-
BAHHBIX COOCTBEHHBIX (DYHKIMIT OmHOpOmHON 3ama4du upuxie nias omeparopa Jlamiaca,
cxoauTes *-cmabo K TouHomy pemennio. Onupasch Ha METOJ, KOMIAKTHOCTU M HEPABEHCTBO
I'ponyosura mokazaHO CyIIECTBOBAHUE U €JIMHCTBEHHOCTH pernennit 3aa4qu Ko — dupu-
xse u 3ama4an [loyosrepa — Cunoposa — Hupuxite it MoaudunpoBaHHOIO ypPaBHEHUS
Byccunecka.

Karoueswie caosa: moduguyuposannoe ypasnernue Byccunecka; ypasnenus coborescro-

20 Muna; HavaavHo-Kpaesas sadava; memod Iarepxuna; *-caabas crodumocmo.
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