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We analyze, by means of singular potentials defined in terms of Dirac functions and
their derivatives, a one dimensional symmetry breaking in quantum mechanics. From a
mathematical point of view we use a technique of selfadjoint extensions applied to a
symmetric differential operator with a domain containing smooth functions which vanish
at two inner points of the real line. As is well known, the latter leads to a two-point
boundary problem. We compute the resolvent of the corresponding extension and investigate
its behavior in the case in which the inner points change their positions. The domain
of these extensions can contain some functions with non differentiability or discontinuity
at the points mentioned before. This fact can be interpreted as a presence of singular
potentials like shifted Dirac delta functions and/or their first derivative centered at the
same points. Then, we study the existence of broken-symmetry bound states. For some
given entanglement boundary conditions we can show the existence of a ground state, which
leads to a spontaneous symmetry breaking. We also prove that within a frame of Pontryagin
spaces this type of symmetry breaking is saved if the distance between the mentioned above
interior points tends to zero and then we can reformulate this result in terms of a larger
Hilbert space.

Keywords: operator theory; resolvent; solution of wave equation: bound states;
spontaneous symmetry breaking; Pontryagin spaces.

Introduction

This work is a direct continuation of the papers [1] and [2]|. In particular, [2] contains
our detailed motivation to the present studies and a sketch concerning the history of
corresponding problems (see also [3| and [4], for the present state of this approach see
[5] and [6] ). Because of this, we not mention here the related historical aspects. We
consider the spontaneous symmetry breaking (see |7] and [8]) in one dimensional quantum
mechanical problems in terms of two-point boundary problems with entanglement which
leads to singular potentials (the derivative of two tied shifted delta-functions).

In Section 1 we recall some well known results concerning a Hamiltonian with one-
point interaction. In Section 2 we present some results on the study of singular potentials
in terms of shifted delta-functions or their first derivative. In particular, we discuss a
Hamiltonian (containing a two-point interaction) whose ground state is degenerate, with
two eigenfunctions. Next, in Section 3 we go to the main contribution of the paper using
different forms of limit pass from two-point interaction to one-point one. In particular, a
selfadjoint extension of a limit differential operator to a larger Pontryagin space preserves
an option of degenerate ground state, moreover, the corresponding Hamiltonian contains
the second derivative of delta-function. Finally, we give our conclusions in Section 4.
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1. Prologue

Our principal aim is a pass from two-point interaction to one-point one, so we need
to recall some basic facts concerning one-point interaction. Let the differential operator
Dy = —d? - /dx? have the domain

D(Dy) = {y(=)| y(x) € W**(R), y(0) = y'(0) = 0}, (1)
where W2?2(R) is the corresponding Sobolev space. Its adjoint one Dj has the domain
D(Dg) = {y(@)| y(@)lr, € W**(Ry), y(2)lr. € W**(R-)}, (2)

where Ry = {z| z > 0} and R_ = {z]| z < 0}, so z(t), 2/(t) are absolutely continuous
functions in the both open half-lines R_ and R, but, generally speaking, are not defined
at zero. At the same time, the following left- and right-hand limits y(—0) = lim y(z),

z—0,x<0
y'(—0)= lim ¢'(z), y(+0) = () and 3/(+0) = lim Oy/(x) are well defined.

lim y
z—0,x<0 z—0, >0 z—0, x>
Evidently Dy C Dj, so Dy C 50 C Dj for every selfadjoint extension 50 of Dy.
Thus, any extension of Dy can be obtained as a restriction of Dfj. A simple calculation
yields (Dgy, z) = —y'(=0)z(=0) 4 ¢/'(+0)z(+0) + y(—0)Z'(=0) — y(+0)Z'(+0) + (y, Dg2).
Therefore, any selfadjoint restriction of Dj§ must be such that

Y (+0)2(+0) = y'(=0)2(=0) — y(+0)2'(+0) + y(-0)z'(-0) = 0. (3)

Any set of boundary values (y(—0),y'(—0),y(40),3'(4+0)) can be considered as an element
of a four-dimensional pseudo-unitary space (for the terminology see [9]) and Equality
(3) means that for any selfadjoint restriction the corresponding sets must form a two-
dimensional neutral subspace. Alternatively, for a selfadjoint restriction one need to define
two suitable linear homogenous conditions. Some of these accept jumps at zero for y(x)
and/or y'(x). The latter is well known (see the book [5]) and can be interpreted as the
Hamiltonian with one-point interaction involving delta-function and/or its first derivative.
In [5] also singular potentials with derivatives of the shifted delta-function in finitely many
points were discussed, but this discussion was restricted to local boundary conditions only.
For historical details see also [6]. Within the frame of one-point problem there are some
selfadjoint extensions with two negative eigenvalues [10]: for lN)O given by the boundary
conditions (a > 0, 5> 0)

a(y(+0) + y(=0)) = (= y'(+0) +y'(=0)), (4)
B(y(+0) = y(=0)) = = (¥'(+0) + ¥'(-0)),

conditions (3) are fulfilled, so it is selfadjoint. This extension has the eigenvalues —a? and
—3? with the eigenfunctions e~*l and Sgn (x)e~?1*! respectively (Sgn (z) = —1 for 2 < 0,
Sgn (0) = 0, Sgn (z) = 1 for z > 0) and Dyy(z) = —y"(z) — % -'(x) (¥'(=0) + ¥ (+0)) —
- 6(z) (y(—0) + y(+0)). N

Let o = (3. The latter means that Dy has the unique negative eigenvalue —a? with
two non symmetric eigenfunctions

e, if x <0, ] 0, if z <0,
wlt) = { 0, it a0  nd wel0)= { e, if x> 0.
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The case in question does not represent a model related with a spontaneous symmetry
breaking. Indeed, the latter is the case of a non transitable barrier: Conditions (4) imply
a-y(—0) =y (—0) and « - y(+0) = —y'(+0) , so the waves with support on R_ and R
are independent. Selfadjoint extensions of this type were named in [6] separated.

In next sections we will consider some analogous schemes for boundary problems at
two interior points —h, h and a behavior of the corresponding extensions if h — 0.

2. Two-Point Interaction

2.1. An Underlying Idea
Let the differential operator Dy = —d?- /dx? have the domain D(D},) = {y(z)| y(z) €
W2’2(R), y(+h) = y'(x£h) = 0}. Then the adjoint operator Dj has the domain
{y ‘R r € W22(R h),y($)|(7h,h) € W272((_h7 h))v y(x)th S W272(Rh)}7

where R_j, = (—o0, —h), R;, = (h, 4+00). A restriction of Dj is selfadjoint for any collection
of four linearly independent homogenous boundary conditions that yields

Y (=h—0)2(=h—0)+ ¢y (-h+0)2(=h +0) —¢'(h — 0)z(h — 0)+
+y(h+0) (h+0)+y(—h—0)Z(=h—0) —y(—h+0)Z'(—h +0)+ (5)
+y(h—0)Z'(h—0) —y(h+0)Z'(h+0) = 0.

Using this way one can, for example, put
y(=h=0) =y(=h+0), y(h—0)=y(h+0), (6)
and the same for z(x), that yields the continuity of y and z. The latter converts (5) to

(Y (=h +0) =¢/(=h = 0))z(=h) + (y'(h + 0) —y'(h = 0))2(h) - (7)
—y(=h)(Z(=h +0) = Z(=h — 0)) — y(h)(Z'(h + 0) — Z'(h — 0)) = 0.

An important part of this case (including an entanglement of boundary conditions) was
analyzed in [1]. In particular, it was shown that under some restrictions and h — 0
Conditions (6), (7) convert to Conditions (4).

Next, let D, be the selfadjoint differential operator given by the formal differential
expression D,., = —d? - /dt with the domain D(D,.,) = {y(t)| y(t) € W**(R)}. Let

eIt
Glt) = )
Then for every z(t) € L*(R) and v > 0
+o00
(Y + Dyey) ' 2(t) = / 2(T)G(t — 7)dT. 9)

Note that D, is the restriction of D; generated (see (5)) by the boundary conditions

y(=h—0)=y(=h+0), y(h—0)=y(h+0),

y'(=h —0) = y/(=h +0), y'(h—0)=1y'(h+0). (10)
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2.2. An Entanglement of Boundary Conditions: Continuous First Derivative
In this subsection we assume y'(—h — 0) = y'(—=h +0), y'(h — 0) = ¢/(h + 0) and the
same for z(z). Then the conditions of selfadjointness for restrictions of Dj takes the form
y'(=h) (=2(=h = 0) + 2(=h 4 0)) + ¢/'(h) (=2(h — 0) 4+ 2(h 4 0)) +
+(y(=h = 0) —y(=h+0)) Z(=h) + (y(h = 0) —y(h + 0)) Z'(h) = 0,

where y'(—h) =y (=h £0), y'(h) = y'(h £ 0). Let additionally

((y(—h +0) —y(—h - 0))) _ (bll b12> (y'(—h)) (11)

(y(h+0) —y(h—0)) bor b ) \ y'(R) )

bi1 bia
ba1 Do
corresponding restriction. If one considers y(x) under conditions (11) as a generalized
function (distribution), then y"(x) = y/(z) + (b11y'(=h) + bi2y'(h))0' (x 4+ h) + (bary' (—h) +
baoy'(h))d'(x — h), where fy(z) = f"(x) if f"(z) exists in the classical sense and fj(z) =0
in the opposite case. Then the corresponding extension D of D) can be re-written as

Duy(z) = —yia(w) = —y"(x) + (buy/(—h) + bioy/ (1) (@ + )+

The symmetry of the matrix B = ( ) is equivalent to the selfadjointness of the

12
+(bgly/(—h) + bggy/(h))5/($ — h) . ( )
Let us choose a matrix B such that for every positive h the functions
e, r < —h, el r < —h,
B efah(efa:t + ea:t) B e—ﬂh(_e—ﬁx + eﬂax)
on(e) =\~ lel < (@) = =5 el <
e~ x> h, —e P x>h
would be eigenfunctions of the operator Dj,. Then
1 1
byo =by1 = —
2 a(l — e—2ah) + B(1+e=26h) )7
1 1 (13)
byy = b1y = —
S a(l— e 2eh) — B(1 + e~25h)
h
2¢~oh ) e
Note that [ ¢p(z)dz = — , so in the sense of distributions
«
—h
lim 9n(x) = do(a) — () (14)
prgo P T QL) T O

where ¢o(x) = e~ therefore in this case the limit generates a new boundary problem,
that (maybe!) directly involves 6 (z).
The extension of Dy, corresponding to (13) will be denote by Dj. Then (see (12))

~ 0'(x—h)—1¢ M) (' (=h) —y'(h
Dhy(:zc) _ —y”(:z:) + ( (x ) Oé(g __f_ 62)2((31)( ) y( ))_
)+ — W) (=h) +y' () (15)
B(1 + e—26h) '
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It is unclear how to treat a limit pass by h — 0 in the latter expression: the domain of ﬁh
depends on h and the eigenfunction ¢;(x) does not converge to any function in L*(R). In
the next section we consider some different approaches to this problem.

3. A Limit Pass to One-Point Interaction:

3.1. A Traditional Approach

In this Subsection we describe a suitable expression for the resolvent of ﬁh for a
negative numberA—’y2, v > «, 7 > [ and estimate the resolvent behavior for h — 0.
Both operators D, and D,., are restrictions of D*. Moreover (compare Conditions (10)

and (11)), y(t) € Dy N D, if and only if y(t) € W**(R) and y'(—h) = y/'(h) = 0. Using
this reasoning and (9) one can proves (see [2] for details) that (721 + D)~ f(t) =

f on(T)G(t — T)dT +0
/ f(T)G(t —7)dr — (— / f(t)sn(t)dt+

TIh
T (- i (16
n g / f(t)wh<t>dt>)+
h
+( ¢h / f(t)sn(t)dt —i— / f(#)wy(t)dt)
2)1n
where
smh(”yh)7 < —h, COSh(’Yh)7 t<—h,
—vh h(~t —hsinh(~t
sn(t) = ~SPOD <, = {00 o
—t o -t
e smh(vh)7 > h, € COSh(Vh), t>h
\ v N v
and
_— Sll’lh("}/h) . e—(a-l—’y)h N eT(OH—W)h . {Sil’lh(Oé + ")/)h n smh(”y — Od)h} ’ (18)
gl a+v  ysinh(ah) (a+7) (v — )
cosh(yh) e~B+Vh  o=(B+h sinh(8+v)h  sinh(y — 8)h
0, =2 . + . — (19)
ol B+~  ~ycosh(Bh) (B+7) (v = B)

Remark 1. Formulae (16), (17), (18) (19) show that al spectrum of Dy, except for two
points —a? and —f32, is non negative.

In [2] the following equalities were proved

“+o0o
i on() - [ Fe)sn(t)at] =0, 20
h—0
—00
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}llir%(’yQIjL D)~ / f(r)G(t — 7)dT +

(21)
2 2G ) Sen (
( 7 g /f t) Sgn (t)dt) .

Thus, the strong limit s- hm(ﬂy2[ —|—Dh) is a one-dimensional perturbation of the resolvent
for D,y (see (9)). If f(t) is even, then (9) and (21) bring }lLir%(”yQ[ + D)) = (3 +
—

D,eg) ' f(t) but D,., has not a point spectrum. Thus, the operator-limit lost the eigen-
value - — = and the corresponding even eigen-function.

Remark 2. The function () = e P Sgn(t) is an eigenfunction for
1
) (v =82
<s—1imh_>0(721+Dh)_1) — ~*I is a selfadjoint restriction of Dj (see (2) and (3))
corresponding to the boundary conditions

y'(—0) =9/ (+0), =B (y(+0) — y(=0)) = ¥'(-0) +¥'(+0), (22)

that is a particular case of (4) with a = 0.

hm(’yQI + Dy)~! corresponding to the eigenvalue The unbounded operator

Proof. The statement concerning 1o(¢) can be checked directly, so it is enough to show that
: : 1 -
(21) brings (22) and viceversa. Let w(t) = 7@(27@(75) — e Py Sgn (t), f(t) € LA(R),
+o0
= [ f(n)G({t —7)dr + (B +7)w / f(t)G(t) Sgn (t)dt. Then w(t) is continuous
fye ’Y‘t| — ﬁefﬁu‘

T , 80 2'(0) = 0.
Thus, x(t) satisfies (22). Now let y(¢) € D(Dj) and satisfy (22). One need to prove that
there is f(t) € L*(R) such that }lirr(l)(VQI + Dp) 7t f(t) = y(t) and (D§ + v*1y(t) = f(t).

—
y(+0) = y(=0) y(=0) +y(+0)

and has an absolutely continuous derivative: w'(t) = —

Let g(t) = y(t) + o(t) for t # 0 and g(0) = . Then g(t)

is absolutely continuous function, its derivative is absolutely continuous too and due to

(22) y/(0) = 0. Put f(t) = (§"(t) + v25(t)) — LD = y(;o))(’VQ -5 2)%@). Note that
+oo
§(t) € D(Dyegy), 0 / (7"(1) +~°9(7)) G(t — T)dr = §(t). The rest is trivial.

3.2. An Extension on a Larger Space

Let us consider the term ¢p(t) / f(t)sp(t)dt for an arbitrary function f(t) €

L*(R) continuous at zero and find 1ts limit in point-wise sense. If t; # 0, then
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+00 +o0
tim n(to) - [ F@)sutde = el [ (0 (0t = 0, bus

—+o0

1 2

_ __ =t i
lim ,(0) / fOstde =~ [ rioe dt+ —1(0) (23)

The function
0, ift=#£0,

t) = 24
) {L if = 0. (24

has no sense as an element of L*(R), but can be a “legal” element in a larger space. Let

t—1 ift<o,
oo(t) = 2
t+§, if t > 0.

Then «(t) € L2 (R) and [|¢(t)|| = 1. Let us introduce the orthoprojection (Pyg)(t):

(Pog)(t) = g(0)u(t), g(t) € L7, (R). (25)
Note that for any g(t) € L2 (R):
(1 = Fo)g(t)llrz, ) = l9() ]| 22m)- (26)

Let us introduce the operator A;, (compare with (16)): L*(R) N C(R) = L2 (R),

f¢h t—T)dT +00

)0 = | T 06t nar - (Z—— [ fs(tar
T on(n)G(t = )7+ o
= FOywn(tydt) | +

+”y—a2 /f dt+(¢h0/f

Note that for any f(¢) € L*(R) N C(R) the corresponding function (A f)(t) is continuous
at zero, so (27), evenness of G(t) (see (8)) and oddness of 1y, (t) bring the representation

Jrfoogbh(T)G(T)dT 400

Ahf / f dT - = 1 / f(t)Sh(t)dt+
h
- (28)
f(t) (1) .
(v* = 042 )1h / Q
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Our goal is to find the strong limit s—hlimo Ay, Due to (26) hlimo([ — Py)(Anrf)(t) coincides
—+ -+
with hlimO(VQI + D)~ f(t) in the norm topology of the space L?(R), so (21) brings (note
-
that PyG(t) Sgn (t) = 0)

,ggu—%xﬁﬂﬁﬁﬁl—%ffﬂﬂG@—ﬂw+

(29)
272G Sgn / F(HG(H) San (1)t
Simultaneously (20), (23), (25) and (28) bring
hmPO (Apf)(t Po/f G(t —1)dr+
(30)
1
/ PG+ = F0) | ().
Let Ay = s—hlirilo Ap,. Then due to (29) and (30)
(Ao f)(2 / f(r —l— Sgn / f(t)G(t) Sgn (t)dt+

(31)

1
/f ()t + s FO) | (),

where f(t) € L*(R) N C(R) and (Ao f)(t) € L2 (R). The space L*(R) N C(R) has the na-
tural dense embedding in the space LZ (R). Thanks to this observation one can introduce
in L2 (R) the operator Ay that initially was defined on L?(R) N C(R) C L? (R) as in (31)
and is extended on whole L2 (R) by continuity. In particular, if &,(t) = e~ (i , then

(Ag)(t) = JLT{}O(Aofn)(t) = mb(t% (32)

i.e. (t) is an eigenfunction of Aj.

Note that Ay is not a selfadjoint operator. The latter contradicts the standard frame of
Quantum Mechanics (see, for instance, [11]), so we need to construct a larger space where
Ay can be extended to a selfadjoint operator. Let us recall Observation (14). The latter
indicates that d(t) is a natural candidate to be include in a new larger space. Let £ be
the linear span of L?(R) N C(R) and §(¢). One can introduce on £ a natural partial inner

o0

product [+, -]: [z(t),d(t)] = x(0), [z(t),y(t)] = f z(t)y(t)dt, where x(t),y(t) € L*(R). The

inner product [§

(t),0(t)] does not defined yet. Let [0(t),d(t)] = ¢, where ¢ is some real
(t) = 7En(t),0(t) — TR ()] = g — 27’—1—7’2\/2_, where 7 € R, &,(t) = e~ ()"
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2
This yields [d(t) — 7, (), 0(¢ )—Tfn(t)]]ﬁ% =q— \/%, so the latter is negative if n is big

enough. Thus, the quadratic form [z, 2] is indefinite on £ for any ¢, so £ can be consider
as a space with indefinite metric. Notions and results concerning spaces with indefinite
metric one can find in [12]. For simplicity we put ¢ = 0, so

—00

where z(t),y(t) € L*(R). Note that the choice ¢ = 0 is compatible with the approach
to Distribution Theory for discontinuous test functions given in [6]. £ represents a pre-
Pontryagin space, where the number of negative squares for the corresponding quadratic
form is one. This space can be completed till a Pontryagin space. There are different ways
to introduce a Hilbert scalar product, all these ways are topologically equivalent. Let us
give one of them. The completion P of £ is presented in the form P = Lio (R)@{&0(%) }eec,
|0(t)|] = 1 and the space L2 (R) conserves its Hilbert structure. Note that «(t) € L2 (R) C
B, Hb(t)H = 1 and due to (33> [57 L] =1, [Lv L] =0, Lgo(R) = LQ(R) 57 {gb(t)}§6<C‘ Our
goal is to find an extension Cy of Ay in such a way that [Cox,y] = [z, Coy] for all z,y € P.
This property in the case of Pontryagin or Krein spaces (see [12]) is called J-selfadjointness.
Evidently we need to find (Cyd)(¢). Thus, due to (31) and (32)

(Cod (), ()] = [5(1), (Ao (1 / FIG(r )~ s / FOG(0)dt+

1
+m[5(t)a [,

where f(t) € LZ (R). Note that [(Cod)(t),d(t)] cannot calculate using Ay, so put
[(Co0)(t),d(t)] = n with ambiguous 1 € R. Summarizing these facts we have

1 a?
Using Equality
o _ el 2aG(t)
e "Gt — 7)dr = -
4 D = ey ey &

and Representations (31), (32), (34) let us calculate Co(¢o(t) — 25(¢)) with ¢ from (14):

-
(72 —a?)

o 1 _2_77>
(P =a?)(y+a) o’

Coldolt) — 20(0) = (o(t) = 25(1) + 100

a 1

(V2 =a?) (v +a)
function adjoin to the eigenfunction ¢(t). This situation does not correspond to postulates

2
If ( - —77) # 0 then (¢o(t) —24(t)) is not an eigenfunction of Cy but it is a
«
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1 2
of Quantum Mechanics [11], therefore ((72 f B ta) ET]) =0, so
292G (1) S
(Cof) / (s ot Lo / FG() Sem (1)de+

/ FOGM0dt+ ———f0) | ), 1) € 22,®), Y

=)
7 —&2)5(’” e —a?)G“)Ww —oa e

Remark 3. Formulae (36) completely define J—selfadjoint operator Cy. By construction
this operator has two eigenfunctions (t) and (¢o(t) — 246(¢)) that correspond to the

eigenvalue (2701 Simultaneously Remark 2 shows that the function Po(t) = e Pl Sgn (1),

1
-B?)"

1o(t) = 0 is an eigenfunction for Cj corresponding to the eigenvalue et

3.3. A Pontryagin Space Effect

YRR YRR

We use the terms “positive vector”, “neutral vector”, “non-negative subspace”, “maximal
non-negative subspace”, etc., in the usual way: they are defined with respect to the
sign of the quadratic form [-,-] (see [12]). Analogously by the symbol [L] we denote
the orthogonality of vectors or sets with respect to the inner product [-,-]. J-selfadjoint
operators in Pontryagin spaces have a key property: any J-selfadjoint operator has at
least one maximal non-positive invariant subspace. The dimension of maximal non-positive
subspace coincides with the range of indefiniteness of the corresponding space.If £_ is a
maximal non-positive invariant subspace for a J-selfadjoint operator B then J-orthogonal
subspace £H s non-negative, maximal and invariant for B. Note that if £_ is a negative

subspace then £ s positive one. In the case of Pontryagin space the inner product
[-, -] restricted on a positive subspace is topologically equivalent to the original Hilbert
scalar product. This brings an option to return completely to the postulates of Quantum
Mechanics where operators must act in Hilbert spaces.

[o.¢]

Due to (33) [do(t) — %(5(15), bo(t) — %5(15)] _ / e~2algy — 2 _ —%.

«

2 —0o0
Thus, ¢o(t) — —4(t) is a negative element of B. Recall (36). One can consider the subspace
a

spanned by ¢g(t) — %5 (t) as a maximal negative subspace £_ invariant with respect to Cj.
Let N, be the linear span of ¢o(t) — 24(t) and «(t). Put

010) = o0) + 5 [0 0 = 2500)] (an(t) = 2000 ) =)= 3 (nl0) - 2000)) . (31)

Then 9(t) € Ng, do(t) — zé(t)[J_]ﬁ(t), Y(t) is an eigenfunction for Cy and [J(t),J(t)] =

8 4 4
3 + P i.e. N, is an indefinite subspace. Since it is invariant for Cj, its orthogonal
Q@ !
complement ‘ﬁw is also invariant for Cy, moreover it is positive. Put 91 = ‘ﬁw. Then N
can be described as follows
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R={f(1): [(0) € L, (R), f(0) = & / (8)6u(t)it}. (39)

Note that for f(¢), g(t) € M the representation [f(t), g f f(t)g(t)dt takes place, so

M can be considered as a Hilbert space isometric to L? (]R) in the evident sense. Note also
(see Remark 2) that 1o(t) € M. If f(t) € L2 (R), then it must be defined at zero. For

u(t) € P, u(t) = f(t) +£6(t), f(t) € L2, (R) we denote

{f(t), if t #0 and f(t) is defined at t,

u (1) = 39
®) 0, ift =0, (39)

so (see (24)) f(t) :; (t) + f(0)c(t). For an odd function f(t) evidently ]% (t) = f(t), ie.
f(0) = 0 for any odd function f(t) € L? (R). (40)

Moreover, we assume that all functions from L?*(R) are simultaneously functions from
L2 (R) nullified at zero. With slight abuse of Notation (39) we shall use notations like
<

=~

W (t) if @ (t) is absolutely continuous function on R\{0}: here and below u/(t) and

<

N
() (t) are treated as a derivatives of generalized functions. Thus, the symbol o (t) is
< © <
/ o " S
defined as follows: «' (t) = u’ (¢). By the same way the symbol «” (¢) is introduced.
Our aim now is a calculation of Cj'|n. First, let us find the range Rg(Cy|n) of the

operator Cp|y. Taking into account (36) for f(¢) € 91, (40) and Denotation (39) we have

-~

Cof(t):CO /f ¢0 dt L /f t—T d7'+

~ +oo

G(t)Sgn (t /f t) Sgn (t)dt)+ 41

Hlt) 7_OZQ/f Dt + 5 /f Jén(1)

Next, using Equality (35)) one can transform Equality (41) to

+00 +o0
+%/f®%@ﬁ»@ :Mﬂ+%/u@%@ﬁw® (42)
with
+oo
/ F(T)G(t — 7)dr + 2 G(t) Sen (1) / F(H)G(#) Sen (¢)dt. (43)
y—p .
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Lemma 1. u(t) € Rg(Co|n) if and only if simultaneously

1) the restrictions u(t)|(—oo,0), & (t)|(=00,0), (t)](0,400), and
u/(t)\(o oc) AT absolutely continuous;

2) u(t), W 1), (1) e Lz, (R);
3) B(u(=0) —u(+ )) = u'(=0) + v/ (+0) ; (44)
4) W' (=0) =u'(+0) ; N

5) u(t) =u (t)+(%/u(t)¢o(t)dt)-L(t).

—00

+o0
If u(t) € Rg(Cylw), then Cy! U (t) +% /u(t)gbo(t)dt-b(t) =
S0 a0 +5 [ 200 5 70) Oon(tnde - ),

Proof. The statement of Lemma 1 follows mainly from Remark 2, its proof and Formulae
(41), (42), (43). Note that, generally speaking, u(t) contains a jump at zero, so u/(t)

represents a generalized function with a singularity at zero, therefore instead of u' the
<&

function «’ () was used, etc.

I » O

Now we fix a maximal positive subspace L, invariant with respect to Cj. Such
subspace is not uniquely defined. We put £, = 9 + {Co(t)}cec, where (see (37)) o(t)

—30(t) = ¢o(t) — 20(t) — 3¢(t).

Remark 4. The subspaces £, is a J-orthogonal complement of ¢o(t) — 26(¢) and can be
+oo

presented as < u(t) = () + a / U (t)po(t)dt — ¢ | - u(t) — Co(2)

00 CEC,u(t)eL2(R)

Theorem 1. u(t) € Rg(Cyl,, ) if and only if simultaneously

1) the restrictions u(t)|(—so,0), W (t)] (00,005 U(t)|(0,400), and
U/ (t)|(0,400) are absolutely continuous;
<& <&

o ~ =~ =~ 9
2) u(t), u (t), u" (t) € L*(R);
3) B(u(—0) — u(+0)) =/ (=0) + u'(+0) ; 45

o o "(—0) — u/'(+0
4)Mﬂﬂﬂﬂ+f?/u®%®ﬁ—u() CEO -
2 2c0
W(=0) — w(+0)
- - 5(%).
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If u(t) € Rg(Colc, ), then

Cou(t) =—u" +7*u (t) — w(=0) — w'(+0)

2

07— e+

0 o —_——— W(—0) — u/(+0) (46)
{5 [ ot morar - == 02— ) |t

Proof. First, Rg(Co|z, ) = Rg(Co|m)[+]{Co(t) }cec. Note that o(t) satisfies (45) and (44) is
a particular case of (45), so for any u(t) € Rg(Co|z,) Conditions (45) are fulfilled. Now
let us consider the inverse statement. Take u(t) satisfying (45) and put v(t) = wu(t) —

ul(_o) - u,(+0) Q(t). Then U’(—O) — Ul(—O) T u,(+0) = U’(—}—O). Due to Lemma 1 U(t) c

200 2
Ra(Colw), s0 Gy tu(t) = Cyto(t) + =0 o EH0) oot ity <20+ 720 (1)+
2 [ T2 720 ooty o) + =D g2 ),
Next, (—v"+7%0)(t) = (—u"+~%u) (t) — (w(=0) = U/;—;O))(VQ —) f;bo\ (t) =.

<o

(/' (=0) — ' (+0))(7* — o?)

——
(—u" + ~y*u)(t) — (o(t) — ¢(t)). The latter yields (46).

2x
O
Corollary 1. If u(t) € Rg(Cylc, ), then
(Gt = I)ut) = = W (£) + (w(=0) — u/(+0)) 8(¢)—
NN ()
S5 ] et = (-0~ ) | o)

[e. 9]

so the operator (Co_l — 721) can be consider as a selfadjoint extension on a larger space
of the operator Dy from (1).

Taking into account the statement of Theorem 1 it seems natural to consider (generalized)
functions of the type

() =0 () + b (t) + C18'(E) + C8" () + Eult), (48)

where (o, (1, (2, € € C, 0 (t) € LA(R). For the function v(t) from (48) we put Y (t) =0
() + Cod(t) + C16'(t) + (20" (t). Using the latter notation one can re-write u(t) from (45.4)

+o0

as (compare with (44.5)!) w(¢) i (t) —i—% / 1\{(7)¢0(7)d7 t(t). Let us return to
— 00
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Formula (15). Strictly speaking in (15) we cannot pass to limit by A — 0, but from some
heuristic point of view we can say that D, — Dy, where

"W (=0) —y'(+0)) ()Y (=0) +y'(+0))
a? I6]

For instance, one can consider the limit in question as the weak limit of generalized
functions, where y(t) is an arbitrary function of bounded variation. As it is clear, the

Doy(t) = —y"(t) : (49)

operator Dy is not well defined as a selfadjoint operator because its domain and a
corresponding Hilbert space are not evident. Let us consider u(t) € Rg(Colz, ). If u(t)
is treated as a generalized function, then ¢(t) is equivalent to zero and

(o]

0) + u/(+0) u'(—0) — u'(+0)

" //? / / u/(_ / "
u'(t) =" (t) — (u'(=0) —u/(+0))d(t) — 5 §'(t) — = §"(t).
This means that the function —u”(t) — 5//(t)(U/(_2)2_ w+0) _ 5/(”(”/(_06) + w(+0)

v
——f—
coincides with the function (Cy' — 1) u (t) defined by (47). Thus, we can re-define the

operator 50 from (49) as a selfadjoint operator I)O in the Hilbert space £, with the scalar

product [+, -] putting Z)O: (Co’l — 72I). A detailed description yields (y(t) € Rg(Colz,))

v
Dout) = — 7 (1)~ SO (—2)2— Y(+0) I (/(~0) +y'(+0)
+oo Y
-3 /(?(m(s Oy (—gl—y(+0)>+5(t>(y (—06)+y(+o>>>¢o(t)dt o

The operator lv)o represents a new type of the Hamiltonian with one-point interaction that
involves ¢” singularity. It has two negative eigenvalues —a? and —/? with, respectively,

the eigenfunctions p(t) and ¢y (t). If & = 3, the operator Dy has simultaneously symmetric
and anti-symmetric bound states, the eigenfunction p(t) + 1o(t) is nullified at ¢ < 0 and
the eigenfunction p(t) — vy (t) is nullified at £ > 0, so the Hamiltonian in question shows
an effect of spontaneous symmetry breaking.

Conclusions

We analyzed here a quantum interaction based in two shifted Dirac delta-functions
with appropriated coefficients ensuring the corresponding Hamiltonian to be selfadjoint.
To get this we used a method of selfadjoint extensions for symmetric operators. Among the
permissible boundary conditions there exists a class of them that leaves the Hamiltonian
invariant under parity transformations. Among this class we stayed with those which
determine a mnon-local interaction and called this phenomenon an entanglement of
boundary conditions. In that situation the ground state is degenerate and there exist
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eigenstates with the wave function situated on one side of the interaction zone, being
zero on its complement, define the left and right handed states respectively. This effect is
basically generated by finite coupling constants in the derivative in the two shifted Dirac
distributions, in distinction to the case of a local interaction where the only possibility to
have spontaneous symmetry breaking occurs for an infinitely high and thick barrier.

The main contribution of the paper consists in the study from different points of view
on a limit pass from two-point interaction to one-point one. In particular, a selfadjoint
extension of a limit differential operator to a larger Pontryagin space permits to preserve
an option of degenerate ground state, moreover, the corresponding Hamiltonian contains
the second derivative of delta-function that is a new effect.
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O IIPEJEJIBHOM IIEPEXO/IE OT JIBYXTOYEYHOI'O
K OJJHOTOYEYHOMY B3ANMOJIENCTBIIO B OHOMEPHOI
KBAHTOBO-MEXAHUNYECKOW ITPOBJIEME, IIOPO>K/IAIOIIIEN
CIIOHTAHHOE PA3PYIIIEHUE CUMMETPUN

A. Pecmycusa'?, A. Comomatiop', B.A. IIImpayc*?

Vuusepeurer Aurodaractsl, . Anrodaracra, umm

2Vuusepcurer Cumon Bosmsap, 1. Kapakac, Benecysia

3VbAHOBCKHIT rOCYapPCTBEHHDIH e JarorndecKuil yHUBEPCUTET, I. YJIbsSHOBCK,
Poccuiickas ®@enepariust

Uccnenyercst cioHTaHHOE HAPYIIEHWE CUMMETPUUA B OJHOMEPHON KBAHTOBOMEXAHUIE-
CO#l IpobJIeMe ¢ CHHTY/ISIHBIM MTOTEHIAJIaM, COAECPIKAIINM CABUHYTHIE JeTbTa~-(pYHKITUA 1
ux npouspogubie. C MaTeMaTUIECKONH TOYKHM 3PEHUs IIPU 9TOM HUCIIOJIB3YETCS METO CaMO-
COIPSI?KEHHBIX PACIIUPEHUN CUMMETPUIECKOro IuddepeHnnaIbHOrO OlepaTopa, 3alaHHO-
ro Ha TIAIKUX (PYHKIUIX C HHTETPUPYEMBIM KBaJIPATOM MOJYJIsA, OOHYJISIONIAXCA BMECTE
CO CBOEHl TIEepPBOIU MPOMU3BOJIHON B JBYX BHYTPEHHHUX TOYKAX BEIIECTBEHHON mpsmoii. Kak
XOPOIIO U3BECTHO, IOCJICIHUN MOJAXO/ IPUBOJUT K JIBYyXTOUYEHYHOU KpaeBOu 3a7a4e C BHYT-
peHHeilt rpanuneii. Mbl HAXOIUM PE30JILBEHTY JJIsi TAKUX PACIIUPEHUI U OTIEHUBAEM €€ TI0-
BeJleHME IIPU M3MEHEHUH IT0JIOYKEHMS YKA3aHHBIX To4ueK. O0JIacTh Olpeie/eHus I0I00HbIX
PACIIIUPEHN MOXKeT COJIePKATh (DYHKIIUU, TEPIISIIIUE PA3PHIB U/ MJIN UMEIOIHe PA3PBIBHYTO
MIPOM3BOIHYIO B TOYKAX, YKA3AHHBIX BBIIIE, ITOCTAETHEE OOBITHO HHTEPIPETUPYETCS KaK MPU-
CYTCTBHUE B3aUMO3aBUCUMBIX (CIEIJIEHHBIX) CUHIYJISIPHBIM MOTEHIUAJIOB (TAKUX, KAK CIBUT
0-byuknuu Jupaka u eé nepsas IPOU3BOJHAS), COCPEJIOTOUYEHHBIX B TeX Ke Toukax Ha-
11 TIeJIb — HAfTH CBA3aHHBIE COCTOSHUS C HAPYIIEHHOW cumMmerpueil. JIist qacTHOrO corydast
B3alMO3aBUCUMBIX 'DAHUYHBIX YCJIOBUAI MBI JOKa3bIBaeM CYIIeCTBOBAHUE CBA3aHHOI'O COCTO-
SAHWS, TPUBOJAIIETO K CIIOHTAHHOMY HAPYIIEHUIO cHMMeTpuu. 1Ioka3amno, 9T0 B T€pMHUHAX
npocTpancTBa [IoHTpArmHA BO3MOXKHO COXPAHEHUS TAKUX COCTOSHUN B IIPEJICTLHOM CJIyvae,
KOIJa PACCTOSHIE MEXKIY YKA3aHHBIMU BBIIIE TOUYKAMEU OOHYJISIETCs. DTOT PE3YJILTAT 3aTEM
nepedopMyJIUpyeTcs B TEPMUHAX PACIIUPEHHOIO T'HILOEPTOBa IIPOCTPAHCTBA.
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