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THE PROBLEM OF IDENTIFYING THE TRAJECTORY OF A MOBILE
POINT SOURCE IN THE CONVECTIVE TRANSPORT EQUATION
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We consider the problem of identifying the trajectory of a mobile point source described
by the Delta function in a one-dimensional linear convective transport equation under
a given additional boundary condition. To solve this problem, the Delta function is
approximated by a continuous function and a discrete analog of the problem is constructed
using finite-difference approximations in the form of an implicit difference scheme. To solve
the resulting difference problem, we propose a special representation that allows to split the
problem into two mutually independent linear first-order difference problems at each discrete
value of a time variable. The result is an explicit formula for determining the position of
a mobile point source for each discrete value of a time variable. Based on the proposed
computational algorithm, numerical experiments were performed for model problems.
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source motion law; delta function approzimation.

Introduction

It is known that the process of one-dimensional transfer of a substance or any physical
quantity (mass, momentum, energy, etc.) by a medium moving at a speed v(z,t), with
disregard of diffusion and in the presence of sources (drains) in the medium, is described
by the convective transfer

)9 4 A, ) = gl ),
where the term \(x, t)u(x,t) describes the absorption or release of a substance and the term
g(z,t) describes the action of an external source. This equation is used to describe a wide
class of processes in ecology, heat transfer, hydrodynamics, acoustics, plasma physics, etc.
[1-3]. Numerous papers are devoted to analytical and numerical research of direct initial
boundary value problems for the convective transport equation [1-5].

It should be noted that in many practical cases, external sources are represented as a
mobile point source and the Dirac Delta function is used to describe such sources, i.e.

g(w,t) = q(t)é(z —r(t)),

where d(x — r(t)) is the Dirac Delta function, r(¢) is the law of motion of a point source,
and ¢(t) is the power of the source. One of the main problems that arise in the study of
processes with mobile point sources is to determine the law of motion of the source, i.e. the
trajectory of the source. However, at present, the problems associated with identifying the
trajectory of mobile point sources are not sufficiently studied. In this paper, the problem
of identifying the trajectory of a mobile point source is presented as an inverse problem of
mathematical physics.
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1. Problem Statement and Solution Method

Let us consider the convective transport equation in the presence of a mobile point
source

% + Z/(x,t)% + Az, hu=qt)d(z —r(t), 0<z <0<t <T, (1)

under the following conditions
u(x,0) = p(x), 0 <z <1, (2)
u(0,t) =6(t),0 <t <T. (3)

It is known that the direct problem for equation (1) consists of defining a function from
equation (1) with the given coefficients v(z,t), A\(x,t), the right-hand side ¢(t)0(z — r(t)),
and additional conditions (2), (3). Let us assume that in addition to the unknown function
u(z,t), the trajectory of a mobile point source r(t) is also unknown, and we need to
construct this function using the following additional condition

u(l,t) = f(t),0<t<T, (4)

where f(t) is the specified function.

Thus, the identification problem is to determine the functions w(z,t) and r(¢) that
satisfy equation (1) and conditions (2) — (4). This problem belongs to the class of inverse
problems related to the recovery of the right parts of partial differential equations [6,7].
To eliminate the singularity in equation (1), we approximate the Delta function with a
continuous function [8]. For this purpose, we use the following ratio

Mz —r(t)) = \/5/76*5(%7“@))2’

where ¢ is a positive number. Having previously de-dimensioned the spatial variable x by
introducing a scale [~!, we take into account the approximation of the Delta function and
conditions (2) — (4) in order to represent equation (1) as follows

u | v(,t)Ou VE/T e

ot or = <

5 ax+M@wu q(t) e 0<z<1,0<t<T, (5)
u(z,0) = ¢(x), 0 <ax <1, (6)
u(07 t) = Q(t), 0<t<T, (7>
u(l,t)=f(t),0<t <T, (8)

where £(t) = r(t)I7.
First, we construct a discrete analog of problem (5) — (8). To this end, we introduce a
uniform difference grid in a rectangular domain {0 <z <1, 0<t<T}
W= {(t],xz) Ly = ZA.CI?, t]’ = jAt, 1= 0, 1, 2, ., n, j = O, 1, 2, ,m}
with the step Az = 1/n for the variable z and the step At = T'/m for the time t.
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Using implicit time approximation, the discrete analog of problem (5) — (8) on the
difference grid @ is represented as

%_T?gljt%g%Jm{ {:@es@fj)2,¢:1,2,...,n—1, (9)

ul) = 69, (10)

w = 5=1,2,...,m, (11)

u = p(z;),i=0,1,2,...,n, (12)

where uf ~ ulz,ty), & =~ £(t)), )\f = Az, t5), U,j = v(zi, t;), ¢ = q(t;), 67 = 0(t;),
7= f(t)).

The constructed difference problem (9) — (12) is a system of linear algebraic equations
in which the approximate values of the desired functions u(z,t) and £(¢) in the nodes of
the difference grid @ are unknown, i.c. ul, &,i=0,1,2,...,n, j=1,2,...,m.

In order to divide difference problem (9) — (12) into mutually independent subproblems,
each of which can be solved independently, we take

efs(xiflfﬁj)Q ~ efs(xifij)Q

and the solution to problem (9)—(12) for each fixed value j, j = 1, 2, . .., m, we represent
as |9-11] ,
w = w! 4 ple=@=’ =0, 1,2, ... n, (13)
where wf , pg are variables, which are not yet known.
Substituting the expression u] in each equation of system (9), (10), we get

wj —uj_l Uj wj —w’ 1 o
%_i__l‘i’*_i_/\qw?
AL | Az |
_ Jj Jod _ od j
(g — P; Vi Dy — Pi1 i el
Rl e A =1
A1 Az iPi I

w) + phe @€ = gg,

From the last relations we obtain the following first order difference problems for
determining auxiliary variables w;, p!

J Jj—1 J ayd J
w: — us v w — w;s .

i i [ i—1 P S
T+7Tx+)\lwz —O,Z—l, 2, o, Ny (14)

wy = 67, (15)
J VI J
D; Vi Py — P ig 4 ejT
E—FTT—F)\JJL :f,lzl, 2, ceey 1, (16)
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Py =0,j=1,23,.,m (17)
It is obvious that the solutions to obtained difference problems (14), (15) and (16),
(17) for each fixed value j = 1, 2, ..., m, regardless of &/, can be determined by the
formulas
wf = : [Ax . u{fl
Az + v] At + NIAzAt
At , S
+ > ‘ wl_,i=1nwj=4¢, (18)
IAz + V] At + NIAzAt
: At : i\/e/TAzAt
Pl = i : o+ d .S/W = ,i=1,n,p,=0. (19)
Az + V] At + NIAzAt IAz + v} At + NIAzAt

And substituting representation (13) in (11), we have

w) + ple s = fi.
From here, we can determine the approximate value of the desired function &(¢) for t = ¢;,
i.e. &

; 1
& =x,—,|—1In
€

fi—wh,
o]

(20)

Thus, the computational algorithm for solving difference problem (9) — (12) by
determining !, i = 0,n, and & for each fixed value j = 1, 2, ... ,m consists of the
following steps.

Step 1. Solve two independent first-order difference problems (14), (15) and (16), (17)
with respect to auxiliary variables w’, p’, i = 0, n, using formulas (18) and (19).

Step 2. Determine the approximate value of the desired function &(t) for ¢ = ¢;, i.e. &,
by formula (20).

Step 3. Calculate the values of variables u using formula (13).

2. Results of Numerical Calculations

To find out the effectiveness of the proposed computational algorithm, a numerical
experiment was conducted for model problems with dimensionless variables. The numerical
experiment was carried out according to the following scheme.

1. For a given function £(t), 0 < ¢ < T, the solution to problem (5) — (7) is defined,
i.e. the function u(z,t), 0 <z <1,0<t<T.

2. The found dependency f(t) = u(1,t) is accepted as accurate data for solving the
inverse recovery problem &(t).

Table presents the results of the numerical experiment conducted for the case [ =10000,
T =200, e =12,57, A(z,t) =0,002, v(z,t) = 2, (t) = 2, p(x) = 0. Here t is the time, &’
and ¢ are the exact and calculated values of the function £(t), respectively. As recoverable
functions, we use £(t) = 0,6 + 0,3sin4t, £(t) = t/T, £(t) = —4t%/T? + 4¢/T.
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Table
Results of numerical calculations

t Et) = 0,64+ | &) =t/T £(t) =

0, 3 sin 4t —4t? /T? +4¢)T

£* § £ § £ §
10 0,824 0,824 0,050 0,050 0,190 0,190
20 0,302 0,302 0,100 0,100 0,360 0,360
30 0,774 0,774 0,150 0,150 0,510 0,510
40 0,666 0,666 0,200 0,200 0,640 0,640
50 0,338 0,338 0,250 0,250 0,750 0,750
60 0,884 0,884 0,300 0,300 0,840 0,840
70 0,484 0,484 0,350 0,350 0,910 0,910
80 0,472 0,472 0,400 0,400 0,960 0,960
90 0,888 0,888 0,450 0,450 0,990 0,990
100 0,345 0,345 0,500 0,500 1,000 0,997
110 0,653 0,653 0,550 0,550 0,990 0,989
120 0,785 0,785 0,600 0,600 0,960 0,960
130 0,301 0,301 0,650 0,650 0,910 0,910
140 0,814 0,815 0,700 0,700 0,840 0,840
150 0,613 0,613 0,750 0,750 0,750 0,750
160 0,368 0,368 0,800 0,800 0,640 0,640
170 0,896 0,897 0,850 0,850 0,510 0,510
180 0,437 0,437 0,900 0,900 0,360 0,358
190 0,521 0,522 0,950 0,950 0,190 0,191
200 0,868 0,868 1,00 0,998 0,000 0,490

Table 1 shows that, in all three cases, the values of the desired function are restored
with high accuracy. In this case, the relative error of restoring the function values does not
exceed 0,07%, 0,22% and 0,3%, except at the point z = 0, for the first, second and third
case, respectively. The results of numerical calculations show that when a point source
approaches the observation point x = 1, the accuracy of identifying source coordinate
increases.

Analysis of the results of the numerical experiment shows that the proposed
computational algorithm can be used in the study of a wide class of processes with a
mobile point source.

Conclusion

The identification problem for a one-dimensional linear convective transport equation
related to the restoration of the trajectory of a mobile point source is considered. The
computational algorithm for solving this problem is based on the approximation of the
Delta function, the discretization of the problem, and the use of a special representation
for solving the difference problem. The proposed method allows to consistently determine
the coordinates of a mobile point source and the distribution of the substance in the
considered area in each time layer.
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SAJAYA NIEHTUOUNKAIIVN TPAEKTOPUN I1IOJBU>KHOI'O
TOYEYHOI'O NCTOYHUKA B YPABHEHUN KOHBEKTVBHOI'O
ITEPEHOCA

X.M. I'am3aes, AzepbaitizKaHCKUIl TOCYIapPCTBEHHBIN yHUBepcuTeT HeTH
U TIPOMBINIJICHHOCTH, T. Baky, Azepbaiizkan

PaccmarpuBaercs 3agadya naeHTndUKAINT TPAEKTOPUHU IIOABUKHOTO TOIEIHOTO HCTOY-
HUKa, OMUCBIBAEMOI'O Je/ibTa (DYHKIMEH, B OJHOMEPHOM JIMHEHOM ypAaBHEHUN KOHBEKTHB-
HOTO IIEPEHOCA 10 33JAHHOMY JOIIOJIHUTEIbHOMY I'DAHUIHOMY YCIOBHUIO. liist perenus pac-
CMAaTPUBAEMOI 381291 CHAYAJIA, JIeJIbTa (DYHKIMS allllPOKCUMUPYETCsl HEIIPEPBIBHON (DyHK-
nueit ¥ CTpOUTCs JAUCKPETHBIN aHaJIor 33/1a4d C IIOMOIIbIO KOHEYHO-PA3HOCTHBIX AIIIPOKCH-
Malldii B BUJIE HESIBHOM PA3HOCTHOM cxeMbl. Jljist perennst moJrydIeHHOM PA3HOCTHOM 3a,/1au
IpeJjlaraeTcs ClelnaJbHOe IIPeICTaBJIEHNE, TTI03BOJISIONIEe Ha KaXK/IOM JINCKPETHOM 3Ha4e-
HUU BPEMEHHOU IIepeMEeHHOH pacHIeNUTh 3a/ady Ha JiBe B3aUMHO He3aBUCHMBIE JIMHEHHbIE
Pa3HOCTHBIE 33J1a9K [IEPBOTO MOPsiiKa. B pe3yibrare rmojydeHa siBHast (POPMYJIa [1JIsl OIIpeie-

JICHU A IIOJIO?KEHUA IIOABU2KHOI'O TOYE€THOI'O UCTOTHHKA IIPU KazKJI0M JUCKPETHOM 3HAYCHUN
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BPEMEHHOI nepemenHoil. Ha 0CHOBE MpPeIOXKEHHOTO BBIMUCATEIBLHOIO AJTOPUTMA, OBLIH
POBEIEHBI IUCEHHBIE IKCIIEPUMEHTHI JIJIT MOJEIbHBIX 3a1a4.
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