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The process of unsteady flow of incompressible viscoelastic fluid in a cylindrical tube of
constant cross-section is considered. To describe the rheological properties of a viscoelastic
fluid, the Kelvin—Voigt model is used and the mathematical model of this process is
presented as an integro-differential partial differential equation. Within the framework of
this model, the problem is to determine the pressure drop along the length of the pipe,
which ensures the passage of a given flow rate of viscoelastic fluid through the pipe. This
problem belongs to the class of inverse problems related to the recovery of the right parts
of integro-differential equations. By replacing variables, the integro-differential equation
is transformed into a third-order partial differential equation. First, a discrete analog of
the problem is constructed using finite-difference approximations. To solve the resulting
difference problem, we propose a special representation that allows splitting the problems
into two mutually independent second-order difference problems. As a result, an explicit
formula is obtained for determining the approximate value of the pressure drop along the
length of the pipeline for each discrete value of the time variable. Based on the proposed
computational algorithm, numerical experiments were performed for model problems.

Keywords: viscoelastic fluid; Kelvin—Voigt model; integro-differential equation; pressure
drop along the length of the pipe; inverse problem.

Introduction

It is known that viscoelastic fluids possess the property of elastic recovery of its
shape, characteristic of solids and characteristics of viscous flow typical for fluids. Such
properties are shown by mixtures of polymers, dough, oil and petroleum products with
a high content of resins, bitumen, etc. For viscoelastic fluids, two different rheological
models were proposed that correspond to two different approaches to determining the
joint action of elastic forces and viscosity of fluids [1-3|. Usually, mechanical models of
viscoelastic fluids are represented by a combination of elastic and viscous elements (Hooke
and Newton models). The rheological model proposed by Maxwell is represented as a
sequential connection of elastic and viscous elements. According to Maxwell’s model, the
strain rate of viscoelastic fluids consists of the elastic strain rate and the viscous strain rate.
A rheological model of viscoelastic fluids, proposed by Kelvin and Voigt, is represented as
a parallel connection of elastic and viscous elements. In this case, the total tangent stress
is represented as a simple sum of the stress corresponding to the elastic deformation and
the stress caused by the viscous resistance. In the Kelvin—Voigt rheological model, the
ratio between total stress and strain is written as an ordinary differential equation with
respect to strain
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Oe
0= + Ee, (1)
where o is the tangent stress, € is the strain that occurs under the influence of stress, E
is the modulus of elasticity, u is the coefficient of dynamic viscosity.

Currently, viscoelastic fluids, including artificially created ones, are widely used in the
aviation, food, oil, chemical industries and many other branches of mechanical engineering.
In many technological processes in these industries, the flow of viscoelastic fluids is one of
the most important elements. Therefore, modelling the flow of viscoelastic fluids in different
media is of great practical importance. General principles of construction of mathematical
models of viscoelastic fluids, issues of numerical simulation of the flow of viscoelastic fluids
in various media are studied in [4-7].

1. Problem Statement

Let us consider a non-stationary axisymmetric flow of an incompressible viscoelastic
fluid in a horizontally arranged cylindrical tube with a constant cross-section. The
mathematical model of this flow is presented as follows [8]:

Ju(r,t) 10 AP(t)
= —— t —, O0<r<R, 0<t<T 2
= ro(r )+ S, 0<r <R 0<t<T, )
where u(r,t) is the rate of flow of a viscoelastic fluid directed parallel to the axis of the
pipe, [ is the pipe length, AP(t) is the pressure drop along the length of the pipe, p is the
fluid density, R is the radius of the tube.

Let us assume that a viscoelastic fluid satisfies the Kelvin—Voigt rheological model (1)

and there is no deformation in the fluid at the initial time. Then, for the given ratio

Oe(r,t)  Ou(r,t)
oo or '’

the Kelvin—Voigt rheological model is written as

t

ou(r,t) / ou(r, T)
+ F dr.

o(r,t) = —
(ryt) = p or or

0
Substituting the last stress representation in equation (2), we obtain the following integro-
differential equation with respect to the flow velocity of a viscoelastic fluid

¢
ou(r,t) 0 T@u(r,t) +£g T/@u(r,T)dT N AP(t)7 (3)
rpor or lp

ot rpor or

0

O<r<R, 0<t<T.
Suppose that equation (3) is endowed with the initial condition

u‘tzo - 07 (4>
natural boundary value condition for r = 0
ou(0,t
00 )
or
and the adhesion condition on the pipe wall
u(R,t) = 0. (6)
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Obviously, setting the law of change of pressure drop AP(t) in time, solving direct
problem (3) — (6) to find the velocity distribution for viscoelastic fluid flow over the cross
section of the pipe and the volumetric flow rate through the pipe. Let us assume that in
problem (3) — (6), the function AP(t) is unknown along with the function u(r,t), and we
need to determine AP(t) by the specified volume flow of the fluid through the pipe

/27rru(7“, t)dr = q(t), (7)

where ¢(t) is the volume flow of fluid through the pipe.

Therefore, the problem is to determine the functions u(r,t) and AP(t) that satisfy
equation (3) and conditions (4) — (7). This problem belongs to the class of inverse problems
related to the recovery of the right parts of integro-differential equations [8-14].

2. Method to Solve Problem

As a result of the replacement

t
w(r,t) = /u(r, T)dT,
0
equation (3) is written as
Pw(r,t)  p 0 (TGQw(r,t)) EJ (Tﬁw(r,t)> N AP(t)
orot rpor or lp

oz rpor
O<r<R, 0<t<T.
For equation (8), we have the following initial and boundary value conditions:

, (8)

w(r,0) =0, % —0, 9)
w0 _ o w(R.t) =0, (10)

In this case, additional condition (7) is converted to the form

/27rrw(r, t)dr = Q(1), (11)

where Q(t) = jq(T)dT.

Let us construct a difference analog of problem (8) — (11). To this end, we introduce
the uniform difference grid

W= {(tj,n-) Ly :iAT, tj :jAt, 2':0,1,2,...,71, j:0,1,2,...,m}

in the rectangular area {0 <r < R, 0 <t < T} with the increment Ar = R/n of the
variable r and the increment At = T'/m of the time ¢. In the inner nodes of the grid @,
we associate equation (8) with an implicit difference scheme

j+1 j j—1 J+L g+l J+1 g+l
wi T = 2wy +wy H , Wip1 — W , wi Wi—q
= 12—~ —Ticl2— | —
At? ripArAt / Ar / Ar
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H wz]"ﬂ —w] w] —wl_, I
ripArAt T2 TE2TAL
E wj+1 - ijrl ijrl . wj+1 Apj—l—l
b Tt — iy =+ ;
ripAr Ar Ar lp
1=1,23,...,n—1, 7=1,23,...m—1,
where wf ~w(r,ty), API~AP(t;), rigip =1+ Ar/2.
Approximating conditions (9) — (10), we have
wl — w?
w) =0, ZAtZ:O, 1=0,n,
Jj+1 Jj+1
wy T W j+1
=0, w™ =0
Ar "
And the discrete analog of additional condition (11) is written as
Z oy T = QITY,
i=1
where Q7T ~ Q(t;11), i are coefficients of the quadrature formula.
The resulting system of difference equations is converted to
. . . 1 .
aw! ) — el 4wl = fi - EAPJH’ i=1,n-1, (12)
wi =g (13)
witt =0, (14)
Z 27T%-nwf“ = Q' (15)
i=1
j=12 .m-1,
w) =0, w; =w), i=0n, (16)
Ti— ET’Z-_ T; ETZ' 1
UTi—1/2 Y2, Mg/ +1/2 = a;+ b+ —

where a; =

ripAT2AL T ripAr2’ Tt ripAr2At  ripAr?’ A2’

g J ot J J=
Wit1 — W wi —wi_y | 2wy —wy

1
Y S PO e B
 ripArAt TN, Tm12TA At?

fi

Difference problem (12) — (16) is a system of linear algebraic equations in which, as
unknowns, we use the approximate values of the desired functions w(r,t) and AP(t) in
nodes of the difference grid, i.e. w!™, AP+ i =0,..,n, j=1,..,m.

In order to divide difference problem (12) — (14) into mutually independent
subproblems, each of which can be solved independently, the solution to this system for
each fixed value j, j = 1,2,...,m — 1, is represented as [8,9|

Jj+1 _ pi+l j+1 1j+1 .
w] T =607+ AP, i=0,1,2,..,n, (17)
j+1 j+1 .
where 67", ¢)*" are unknown variables yet.
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+1

Substituting the expression for wf in each equation of system (12) — (14), we get

(0611 = 0" + 001 — £i] + AP aigl!] — el + bl + ) =0,

0{4’1 + Apj+l¢{+1 — 86+1 + APj+1¢é+17
g L APIFIEIH Z ()

From the last relations we get the following difference problems for determining the
auxiliary variables 677", ¢/

aitl ) — 0l b0l — fi=0, i=1,2,.,n—1, (18)
o =, (19)
61 = 0. (20)
, , , 1
@#ﬁ—q#“+@#ﬁ+rﬂﬂLi:Lme—L (21)
p
o1 =", (22)
¢ = 0. (23)

i=1,2,3,...,m—1.

For each fixed value j = 1,2,...,m — 1, resulting difference problems (18) — (20) and (21)
— (23) are given by a system of linear algebraic equations with a tridiagonal matrix and
solutions to these systems can be found independently of AP/*! by the Thomas method
[9].

And substituting representation (17) in (15), we have

D2l £ APTY Jamni] T = Q7
i=1 i=1

From here, we can determine the approximate value of the desired function AP(t) for

t= tj+17 ie. )
Qj+1 - Z?zl 27T”Yi7“i9£+1
Z?:l 277iri¢g+l
Thus, for each fixed value j = 1, 2, 3,..., m — 1, the computational algorithm for
solving difference problem (12) — (16) by definition of w/™,i = 0,n and AP/*! is as
follows:
1. Solutions to two second—order linear difference problems (18) — (20) and (21) — (23)

with respect to the auxiliary variables 0{ ) ¢g’ *1 i =0, n, are determined;
2. Formula (24) defines AP7*!;

3. The values of variables w/ ™', i = 0, n, are calculated using formula (17).
It should be noted that from the ratio

AP =

(24)

ow(r,t)
ot

using numerical differentiation procedures, it is possible to find the velocity distribution
for the viscoelastic fluid flow over the pipe section in each time layer.

u(r,t) =
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Table
Results of the numerical experiment
t, s AP, AP, AP, MPa
MPa MPa
0=0,02 | 6=0,05

200 2,175 2.175 | 2,189 | 2,210
100 6,209 6,209 | 6,211 | 6,214
600 5,569 5,569 | 5,602 | 5,651
800 2,005 2,005 | 2,040 | 2,002
1000 | 5,264 5,264 | 5,342 | 5,458
1200 | 6,433 6,433 | 6,458 | 6,496
1400 | 2,315 2,315 | 2,340 | 2,378
1600 | 4,172 1172 | 4228 | 4311
1800 | 6,925 6,025 | 6,087 | 7,070
2000 | 3,045 3,045 | 3,008 | 3,127
2200 | 3,144 3144 | 3,156 | 3,173
2400 | 6,952 6,052 | 7,074 | 7,257
2600 | 4,054 | 4,054 | 4,073 | 4,100
2300 | 2,376 2,376 | 2,388 | 2,407
3000 | 6,507 | 6,507 |6,507 | 6,508
3200 | 5,149 5149 | 5,160 | 5,176
3400 | 2,016 2,016 | 2,048 | 2,005
3600 | 5,676 5676 | 5,734 | 5,820
3300 | 6,120 6,120 | 6,123 | 6,129
1000 | 2,134 2,134 | 2,141 | 2,142

3. Results of Numerical Calculations

To find out the effectiveness of the proposed computational algorithm, numerical
experiments were performed for model problems. Numerical experiments were carried out
according to the following scheme:

— for the given function AP(t), 0 < ¢ < T, find a solution to problem (8) — (10), i.e.
the function w(r,t),0 <r < R, 0<t < T}

R
— consider the found dependency Q(t) = [ 2mrw(r,t)dr as accurate data for solving
0

the inverse AP(t) recovery problem.

The first series of calculations was performed using these undisturbed data. The second
series of calculations was performed by applying a function Q(¢) to model the error of
experimental data

Q) = Q(t) + dn(t)Q(1),

where 7(t) is a random process simulated using the random number generator; § is the
error level. For perturbation of input data, we consider the error level to be 6 = 0, 02; 0, 05.

Numerical calculations were performed using a spacetime difference grid with
increments Ar = 0,03m, At = 0,005;1;10s. The results of the numerical experiment
performed for the case p = 0,06Pa - s; p = 900kq/m?; R = 0,6m; AP(t) = 4,5 —
2,5sin 10t M Pa; E = 200Pa; At = 10s; L = 10000m using undisturbed and disturbed
input data are presented in Table; where ¢ is time, AP are the exact values of the function

Becrauk FOYpI'Y. Cepus «MareMmaTudecKoe MoOAeJIMPOBaHUE 95
u nporpammuposBanues (Becruuk FOYpI'Y MMII). 2022. T. 15, Ne 4. C. 90-98



A.R. Aliev, Kh.M. Gamzaev, A.A. Darwish, T.A. Nofal

AP(t), AP are the calculated values of AP(t) for undisturbed data, AP are the calculated
values of AP(t) for disturbed data.

Results of the numerical experiment show that with undisturbed input data, the
desired function AP(t) is restored exactly for all calculated grids in time (Table, column
3). And when using perturbed input data, where the error has a fluctuating character, the
desired function AP(t) is recovered with an error. At the same time, the use of fairly small
time (At < 0.005s) steps gives the opposite effect compared to the numerical solution
of direct boundary value problems, i.e. with a decrease in the time step, the error in
restoring the function AP(t) increases. However, for the case of perturbed input data, it
is not possible to theoretically determine the range of the time step at which the solution
to the inverse problem is stable. Therefore, for perturbed input data, the time step was
determined by numerical experimentation. Thus, when using At = 10s in calculations,
the maximum relative error of restoring the values of the desired function AP(t) did not
exceed 1,76% at the error level § = 0,02 and 4,42% at 6 = 0, 05.

Analysis of the results of the numerical experiment shows that the proposed
computational algorithm provides stability of the solution to errors in the input data.

Conclusion

The problem of determining the pressure drop in a non-stationary flow of a viscoelastic
fluid in a cylindrical pipe is considered based on information about the change in time
of the volume flow of the fluid through the pipe. To solve this problem, we propose a
method based on converting an integro-differential equation into a third-order differential
equation, discretizing the resulting problem, and using a special representation to separate
the desired variables. The proposed method allows us to determine the pressure drop along
the length of the pipe in each time layer.
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YNCJIEHHBIN METO/I, PEIIIEHUSA OBPATHOM 3A AU
HECTAIIMIOHAPHOT'O TEYEHUSA BA3KOVYIIPYTIOI
KNJKOCTU B TPYBE

A.P. Aauese'?, X.M. I'am3aee®, A.A. Jdapsuw?®, T.A. Hogpanr*®

! AzepbaiiizKaHCKHI TOCYIapPCTBEHHBII YHIBEPCHTET HeTH 1 IPOMBIIIICHHOCTH, T. Baky,
AszepbaiiKan

Nncruryt MatemaTuky n Mexannkn HAH Asep6aiimxana, . Baxy, Azepbaiimkamn
3Xenyancknuit ynusepcuter, . Kaup, Eruner

“Tandcknit yansepenter, r. Tand, Caynosckas Apasud

SVuusepcuter Diab-Munng, . Munna, Erumer

PaccmarpuBaercst mporecc HeCTaIMOHAPHOTO TEYEHHS HEC)KUMAEMON BA3KOYIIPYTOI
KUJKOCTU B IUJINHIPUIECKON TPyOe OCTOSTHHOTO ceueHus. Jljist onncanust peoioruaecKux
CBOWCTB BA3KOYIIPYTOU YKUJKOCTH UCIOJIb3yeTcs Mojiesb Kenbsuna — Qoiirra u MaTeMaTH-
JeckKasi MOJeJIb JIAHHOT'O IIPOIECCa IPeCTaBJISeTCs B BUJE WHTErpo-IuddepeHnaIbHOrO
yPaBHEHUS B YaCTHBIX [IPOM3BOIHBIX. B paMKax JaHHOI MOIE/IH [TOCTABJIEHA 3aa4a OIpe-
JleJIEHUs] TIEPETaIa, TABJIEHUS 10 JJINHEe TPYObI, 00ECIIEINBAIOIIETO IPOILYCK 3aIaHHOTO Pac-
X018 BA3KOYIPYTOii kuakocTH o Tpybe. [locraBienmas 3agada OTHOCUTCS K KJaaccy odpaT-
HBIX 33/1a4, CBSI3aHHBIX C BOCCTAHOBJIEHMEM IIPAaBbIX YacTeil MHTerpo-auddepeHnuaabHbIX
ypasuenuii. [lyrem 3aMeHbI IepeMeHHBIX HHTEIPO-Tud dhepeHnuaabHoe ypaBHeHre Ipeodpa-
3yercs B quddepeHnnaabHoe ypaBHEHHE TPETHero MOpsiIKa B 9aCTHBIX Mpou3BoaHbx. CHa-
4JaJla CTPOUTCHA JIUCKPETHBII aHaJIor 3aj/laddl C HCIIOJIb30BaHUEM KOHEYHO-Pa3HOCTHDBIX all-
npokcuMartuit. JIjis1 permeHns moIyIeHHol pa3HOCTHON 3a,1a9u IPeIaraeTcs CIelnaIbHOoe
IIpeJicTaBjIeHue, 103BOJIAIONIee PACHIEIUTh 33/1a41 Ha JIBe B3aUMHO HE3aBUCUMBIX Pa3HOCT-
HBbIE 33J[a91 BTOPOTO MOPsiJiKa. B pesysibrare mojydeHa siBHasi (GOpMYyJa JJIsi OlpeIeIeHs
IPUOJIMXKEHHOTO 3HAYEHUsI TIeperaa JJaBJIeHnsl 110 JIJIMHe TPYOOIIPOBO/IA IIPU KaXKIOM JIUC-
KPETHOM 3HAYEHUU BPEMEHHOM repemenHoi. Ha ocHOBe mpe yIoyKeHHOTO BBIYUCIUTETHLHOTO
aJIropuT™Ma OBLITH [IPOBEIEHBI YNCIEHHbIE SKCIIEPUMEHTHI [IJIsi MO/IEIbHBIX 3aad.

Karouesvie crosa: sazkoynpyean srcudkocms; modeav Keaveuna — @otiema; unmeezpo-

Jugdeperyuarvroe ypasrerue; nepenad 0asieHus no daure mpybv,; obpamuas 3a0aya.
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