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An inverse analysis is used to recover the heat transfer coefficient in heat conduction
problems from boundary measurement of the temperature. The numerical scheme is based
on the finite element method in the space variables, the method of finite differences in
time, and a special iteration scheme to determine the heat transfer coefficients on each time
step. The heat transfer coefficients is sought in the form of a finite segment of a series with
unknown Fourier coefficients depending on time. The algorithm for solving the problem
relies on theoretical results stating that this problem is well-posed and can be reduced
to an operator equation with a contraction. The results of numerical experiments confirm
theoretical arguments that this problem is indeed well-posed. The obtained results reveal
the accuracy, efficiency, and robustness of the proposed algorithm. It is stable under random
perturbations of the data.

Keywords: inverse problem; heat transfer coefficient; parabolic equation; heat and mass

transfer.

Introduction

Consider an inverse problem of recovering the heat transfer coefficient. The
mathematical model in question is as follows:

Mu=uvu — Lu= f(t,z), (t,z) e Q= (0,T) x G, (1)
Bu|s =g(t,z) (S=(0,T)xT), ulj=o = uo(x), (2)
where Lu = 370 aij(t, @)y + D ai(t, 2)us, + aot,z)u, G € R" is a bounded

domain with the boundary I', Bu = 1., a;(t, z)us,v; + (B(t,7) + Bo(t, 2))u, (v is
the outward unit normal to I'), and b; € I', {b;}/_; is a collection of points. The
problem is to find a solution to equation (1) satisfying (2), (3) and the unknown function
B(t,x) =375, Bi(t)®i(t,z) (the functions ®; are given and f;(t) are unknowns).

In many thermal engineering problems involving high temperatures/ high pressures,
ecology, diffusion, filtration, the boundary conditions are not fully known since there are
technical difficulties in obtaining such data (see [1-4| and the bibliography therein). To
recover the desired parameters, inverse problem formulations are required, which entail
to performing some extra measurements of certain accessible and relevant quantities. At
present, there are many works dealing with numerically solving problem (1) — (3), the
points {b;} in (3) can either be interior [5-13| or boundary ones [14,15] in G. Describe
some known results. In the stationary case the above statement is considered in [16]. In [15],
a parabolic system is considered and the constant heat transfer coefficients are sought (the
uniqueness theorems for the solutions is obtained and the numerical method is described).
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The time-dependent heat transfer coefficient is numerically determined from the values
of the solution in a set of internal points in [7-9,11-13]. In [5, 6], a system of two one-
dimensional parabolic equations is considered. In [7,17], it is assumed that the heat transfer
coefficient depends on x and the additional data are the Dirichlet condition on a part of the
lateral surface of a cylinder. The data of the same type are used in [18|. There are several
studies, where the heat transfer coefficient is determined in the case of nonlinear boundary
conditions. We can refer to the classical results [19], where the uniqueness theorem of a
classical solution was obtained, and can also mention the articles [20-25]), where the
nonlinear function (¢, x,u) (sometimes independent on the space variables) is sought
under the boundary condition of the form g—}\‘f + ¢(t,z,u) = g. Note that in many cases
the problem is replaced with the corresponding control problem which is actually studied
but a solution to the latter problem is not a solution to the initial problem, i. e., the
convex set over which the minimization is performed is sufficiently small (see [23-25]).
Many works also deal with the closely related problem of determining the fluxes through
the boundary or a part of it using the same overdetermination conditions (3), which arises
when linearizing the problem (see [4,26-28] and the references therein). There are very
few theoretical results for problem (1) — (3) especially in the multidimensional case. We
can refer to the article [29], where the uniqueness theorems was obtained for classical
solutions in the case of Mu = u; — Au = f and r = 1. The existence theorem in the
multidimensional case for solutions to problem (1) — (3) was obtained in [30].

Note that almost all numerical algorithm used in the above-mentioned article are based
on reducing the problem to a control problem and minimization of the corresponding cost
functional which often requires large computational capabilities. Some of the methods in
model cases employ explicit representations of Green functions or Fourier expansions of
solutions. Moreover, the heat transfer coefficient depends on t only in almost all these
articles. In our opinion, it is quite naturally to look for this coefficient in the form of a
finite segment of a Fourier series or using the basis of the finite element method whenever
we construct a piecewise linear approximation of an unknown function. This strategy is
realized quite rarely (see [31,32]). This article exposes a numerical method relying on finite
element method in the space variables and a special iteration scheme in which the heat
transfer coefficient is sought in the form of a finite segment of a series. The number of
summands in this series depends on the number of measurements. Note that this method
does not rely on reducing the problem to a control problem. We use a direct method based
on theoretical considerations exposed below. There is an existence and uniqueness theorem
in this problem [30] with boundary observation points and theoretically a solution can be
obtained by successive approximations. The process is convergent locally in time. This idea
is realized numerically. The problems when the observation points lie insider the domain
are generally ill-posed. But we show some examples in this case as well. The results of
numerical experiments are quite satisfactory in both cases.

1. Preliminaries

In this section we describe notations and expose theoretical results which form the base
for our constructions. The Sobolev and Holder spaces are denoted conventionally (see [33—
36]). Given the interval J = (0,7), the symbols W;"(Q) = W, (J; L,(G)) N L, (J; W (G))
and W (S) = W3 (J; L,(I')) N L, (J; W) (I')) stand for the anisotropic Sobolev spaces. Let
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(u,v) = [, u(z)v(x)ds. All function spaces and the coefficients in (1) — (3) are assumed
to be real. By a norm of a vector we mean the sum of the norms of its coordinates.
We say that the boundary I' of the given domain G is of the class C* (s > 1), if, for
any point xy € I, there exists a neighborhood Y;, (a coordinate neighborhood) of this
point and a coordinate system y (a local coordinate system) obtained by a rotation and
a translation of the origin from the original coordinate system such that the y,-axis is
directed along the inward normal to I' at xy and the equation of the part Y,, N I' of
the boundary has the form y, = v(v/), v(0) = 0, |¢| < 6, ¥ = (y1,---,Yn_1), Where
v € C(B) (By ={y : [y| <0}), GNYe ={y : Y] <80 < yu— () < i},
(R*"\G)NY,, ={y: V]| <, -6 <yn— () <0}. The numbers § and 0, are fixed for
the domain G, and without loss of generality we assume that §; > (M + 1), where M is
the Lipschitz constant of the function 7. Fix the parameter § with the above properties. We
take ¢ to be sufficiently small so that Bs(b;) N Bs(b;) = 0 for i # j, i,j =1,2,...,r, where
Bs(b;) is the ball of radius § centered at b;. Denote Q7 = (0,7) x G, G5 = U;Bs(b;) N G,
F5 = FﬂG_g, S(; = (O,T) X Fg, ST = (0,7') x I'. Let

FeC? TseC> (4)

We use straightening of the boundary, i. e. the transformation z, = y, — Y(v/), 2’ = ¢/,
with y as a local coordinate system at b;. We have that = = z(y) = x¢ + Ay, with A
as an orthogonal matrix. Under condition (4), the transformation z = x(y(z)) = z'(2)
belongs to the class C° (i. e. 27(z) € C3(U), with U = {2 : |2/| < 6,0 < z, < 6;}). Denote
Q) = (0,7) xU, Qo= (0,7) xU, S] = (0,7) x Bs, and Sy = (0,T) x Bj. Describe our
conditions on the data. We assume that

a; € Ly(Q), an € C(Q), Bo,amlr € W?°(S), so=1/2—=1/2p,p>n+2, (5)

a; € Loo (0, T; W) (Gs)), am € Loo(0, T3 W (Gs)), (6)
where t =0,1...,n, k,l=1,...,n,
922

up(z) €Wy 7(G), f € Ly(Q), g€ Wn™(S), (7)

Construct the functions ¢;(z) € C5°(R™) such that ¢;(x) =1 in Bs/s(b;) and ¢;(z) = 0 in

R™ \ Bss/a(b;).
Let Y}, be the coordinate neighborhood for b, € I". We require that

Vgt 2'(2,0)) € W;D’st(So), Vopif(t,2'(2)) € Ly(Qo), i=1,2,...,r, (8)

Vzlgpzuo(xl(z)) S W])Q_Q/p(U), Vz/akl(t, I’i(Z/, O)),
V. Bo(t,a'(2,0)) € W02 (Sg) (k,i=1,2....n,i<r). (9)
Note that conditions (8), (9) are independent of the local coordinate system y and the

coordinate system z.
Suppose that the functions ®;(¢, ) possess the properties

®; € W2o0(S), Vo 4(t, 27 (2,0)) € W02 (Sp), i,j =1,2,...,7. (10)
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Denote by ®(t) the matrix with entries ¢;; = ®;(¢,0;) (4,7 = 1,2,...,r) and assume that
[0i(t)] > 61, |det @] > 6, > 0Vt € [0,T], ¥y € W, (0,T), uo(bs) = 1:(0), (11)

where ¢§; is a positive constant and 7 = 1,2,...,r. Take the first of the equalities (2) at
the point (0,b;). We have that

Buy(b;) = 8%0—](\?]) + B8(0,b5)uo(b;) = g(0,b;) — Bo(0,bj)ue(by), j=1,...,7. (12)

These equalities is a system relatively the quantities 5;(0) which can be written as

S AOB0.5) = s (0(0.5) - e = BOb)wb). =1 (13)

J

In view of (11), the consistency condition at ¢ = 0 can be written as follows:

Oug ()
ON

+ (5(07 SL’) + BO(Ov I))UO(Z‘) = 9(07 SL’) Vo € F’ (14)

where the constants 3,(0) are solution to system (13).

Theorem 1. Suppose that conditions (4) — (11), (14) hold. Then on some segment
[0,70] there exists a unique solution to problem (1) — (3) such that u € W)}*(Q"),
Gi(t) € We(0,m0) (i = 1,2,...,7) and Vapu(s'(z)) € Wy*Qf), i = 1,...,7. The
solution depends continuously on the data.

The arguments of the proof of this theorem (see [30]) allow to construct numerical
algorithms of constructing an approximate solution. Let @ = (831, f2,...,3,)!. Solving
problem (1), (2), we construct the mapping & — u(&). Taking x = b; and using (3), we
obtain the system

- 1 Ou(t,b;
> A0t 1) = s ta(t ) = T = b)), T L (9
i=1
which can be written in the form
- - 0 b,
B - (I)_lFu E - wl(t) (g(tabj) - % - 60(t7b3)¢3<t))7 j - ]-7 cee, T (16)

In operator form this equation can be written as follows:
a= R(a), (17)

with R as some operator. We could not prove in [30] that this operator is a contraction.

8u(t, b])

constructed with the help of the function u(«) and the differential equation such that the
operator constructed is a contraction in some Banach space and a solution can be found
by successive approximations. We use a close idea in order to construct the numerical
algorithm below.

But we proved that we can replace the functions with some other functions
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2. Numerical Algorithm

Describe a numerical algorithm. We consider problem (1) — (3) in the case of n = 2
and the rectangle G = (0, X) x (0, 7). We take the equation

Mu = uy — Lu = uy — div(c(t, ) Vu) + b(z, t)Vu + a(t, z)u = f,
b(t’ ZL’) = (bl(x>t)v b?(xvt))Tv Vu = (ﬁ 8_U)Ta

Ox1’ Oxa

(18)

where ¢ = diag(cy,ce) is a diagonal matrix and (t,z) € @ = G x (0,T). The
overdetermination conditions are as follows:

w(y;, t) =i(t),i=1,2,...,7, y; € Lo ={(21,0) : =, € (0, X)}. (19)

Let I' = 0G, Sy = (0,T) x I'yg. The initial and boundary value conditions are rewritten as
follows:

uli=o = uo(x), catte, — (B + Bo)uls, = g(t, 21), uls\s, = 0. (20)
We have the consistency condition

uo(z)|ryr, = 0. (21)

On the first step, we employ the finite element method. Let 8 = >"_| a;(t)®;(x1), where
the functions «a; are unknowns and the functions ®; are given functions. We have that
y; = (2¢,0). Given a triangulation of G' and the corresponding basis {¢;}¥, the nodes
are denoted by {b;}. An approximate solution is representable as

N
v = Z Oz'(t)%(ﬁ)’ <Pz‘|r\r0 =0, %‘(bj) = 52‘;‘,
i=1

where ¢;; stands for the Kronecker symbol. For convenience, we assume that the points y;

agree with the nodes by, ...,b.. The functions C; are a solution to the system
RyCi+ Ri(t)C = F + f, C = (C1, Ch,...,Cn)", (22)
where
~ X X
F = (—/ B(t, x1)v(t, z1,0)¢1(x1,0) day, . . ., —/ B(t, z1)v(t, z1,0)on(z1,0) doy)T,
0 0

and the coordinates of f are of the form
b's
fi= [ feop@de = [ gto)pn0 o,
a 0

Ry and Ry are matrices with the respective entries 7;; = (¢4, ¢;) = [, ¢i(2)@;(x) dz, and

Rji = (c1(t, ) Prar> Pjar) + (C2(E, T)Phay, Pjas )+

X
+ (b(t, 2)Veor, ;) + (alt, ©)¢x, ;) +/0 Bo(t, z1)pr (w1, 0)p;(x1,0) dy.
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We have C(0) = Cy = (ug(by), ..., ug(by)). We look for a solution to system (22) by a
finite difference method. Given the step 7 = T//M in time, replace equation (22) with the
system

—

C’L’+1 -

T

QN

R + A1 Gy = Fopr+ fin, Co=(CL...,.CMT, i=0,1,2,....,M—1, (23)

)

where CF ~ Cy(7i), F; ~ F(ri), fi = f(ri), A; = Ri(7i). The coordinates of the vector
F; 1 are written as follows:

Ff, = Zaz+1<z¢z+1/ D;(x1)ei(w1,0)pr(21,0) drr+

+ Z CzlJrl/ (I) xl)apl(xl,())gok(xl,()) dl’l), k= 1,2,...,7‘, (24)

l=r+1
r ' N X
Ffy = Z%(ZQ@/ ®;(x1)eu(z1, 0) (a1, 0) dx1>, k>, (25)
j=1 =1 0
where @; = (al,...,an)T (@ =~ a(ri)), U(t) = (1, s, ..., 1%,)7T, and U; = U(7i). Rewrite
(23) in the form
(Ro + TAi+1)éi+1 = TﬁiJrl + Tﬁﬂ + Ro@’, i=0,1,2,...,.M - 1. (26)
Define the matrices R, (I = 1,2,3,4) with entries 7}, = r (j = 1,2,. k =
1,2,...,7’),r?k:rjk (j:1,2,...,7“,k::7’+1,.. N), rk—rjk (]—7"—1—1 , N,
k=1,2,....r),and 75, =15 (j =7 +1,...,N, k =r+1,...,N). Respectively, deﬁne
the matrix Al , (I = 1,2,3,4) with entries alk = (j = 1 2, .,k =1,2,...,7),
a?sz]k(]:12 Lro k= r+1,. N), ;’k:Rjk(jZT—i-l,...,N,
kE=1,2,. )a;*k:R (j =r+1,. Nk:—?“—kl N). Also, we introduce
the matrix BzJrl with entries b“rl = (Zl LUk fo i(z1)pi(z1,0)p(21,0) dry +
Zl:r—i—l i1 fo i(z1)i(z1,0)pp(21,0) dx1> (j=1,2,...,r, k=1,...,r) and the matrix
B},, with entries bif' = (Zl e fo (@) (1, 0)r (21, 0) dan) G = 1,...,7,
k =7+ 1,7 +2...,N). Also, introduce the vectors 0, = (fii,...,fn)7, fhy =
(it AT, C’}H = (CrH,...,CN )T, In this case system (26) can be rewritten in
the form

(Rg + rAm)z/zm + (R + TAZH)C}+1 = 7B @1 + erl + Rby; + R2C

where 220,1,2,...,M—1, or in the form

Ty = (BZQH) (R + TA@+1)¢1+1 + (R§ + TA@+1)C¢1+1 fz+1 Ro¢z Rgéﬂv (27)

C?H = (Ry+ 7AL,) [ (RS + TAZH)%’H + 7B}, d; + Tﬁ-‘,—l + RSQZz‘ + Ré@l]? (28)
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where ¢ =0,1,2,...,M — 1. Thus, an approximate solution is written as
v(r(i Zwmsow Z ko), i=0,1,... M —1,
k=r+1

Define the initial data. We have C& = ug(bg) for k = 1,..., N. The numbers @ = C¥ are
solutions to the system

Zao (be) 11 (0) = 2(0, by o, (b)) — Bo(0, b )b (0) — g(0,by), k=1,...,r.

An analog of condition (11) is the condition
det {®i(bk) izt 7 0, ¢ilt) # 0 VL, 1. (29)

For i = 0, the right-hand side of system (28) is known and we can find the vector C’},
using system (27) we determine @;. Repeating the arguments we can find the vectors 62‘14—1
for all 7 and respectively the vectors @;. The convergence is improved if we use the idea of
the predictor-corrector method. Assume that the vectors @; and C; are given. Using (28)
and (27) we can determine @;41 and Cj . Assign a? := @;4. Inserting this vector in (28)
instead of @; we can find the vector @H again and assign C’ﬁiﬂrl = ﬁi+1. Using (27) we
can determine @;,; and assign a} i+l = 6ZZ+1 Inserting this vector in (28) instead of @;, we
again determine éi+1 and assign C? 1= C’H—l Usmg (28) we determine @;,; and assign
@7,1 = @;1. The process is repeated until |Ozerl all, !| < e, where £ > 0 is a small given
number. If the latter holds for some j, we assign

Cir = Cjyy, Qir = a4,

Note that the problem is nonlinear and generally we can not guarantee that the
matrix BY,, remains nondegenerate for all i (see (27)) and condition (29) ensures that
det B, # 0 only locally in time. To improve the convergence in a singular case, we can
use the Tikhonov regularization replacing the matrix (BY,;)™! in (27) with the matrix
(BY)*By +el)"Y(BY,)*, where € > 0 is the parameter of regularization and [ is the
identity matrix. The same algorithm can be used in the case of interior points {y;}I_;.

3. Results of Numerical Experiments

In this section we analyze the results of numerical experiments. The characteristics of
the computer are as follows: the processor Intel(R) Core(TM) i5-9500F CPU @ 3.00GHz,
16.00 GB RAM, the 64-digit operating system Windows 10 Pro.

As a result of calculations, we obtain approximate values of a solution
(u(zy, x9,t), ay(t),...,a,(t) to problem (18) — (21) at the points (t1,%s,...tyx). Here the
point (z,y) belongs to the rectangle (—1,1)% and 7' = 1. We use meshes with different
number of nodes. Two of them with the number of nodes N; (i = 1,2) are shown in Fig. 1.

All numerical experiments contain unknown functions u, ;, the boundary Condltlons
d (the noise percentage divided by 100), € (the estimate for the norms |a7,, — &7, '), the
coefficients by, b, a, and the right-hand sides f.
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Fig. 1. Meshes a) N; = 799; b) Ny = 3069

We take e = 1072, 7 = At = T/M, M = 100 and use the following data.

In the first case,

the solution is u(x,t) = xt + 2%yt + (x + 1) - (y + 1);

the initial data are ul;—g = (z + 1) - (y + 1);

the additional information is 1;(t) = u(y;, t); (y; are observation points);

the coefficients are a = (t + 1)(z2 + 1), by =ta®, by =0, c; =2+ 1, co = 2> + 1;

the right-hand side is f = ot +tyz? + (z+1) - (y+1)—1—z- (> +2) —y- (t —2)%);
the coefficient 3 = 1 + at + t2 + 2%?;

O, =1, 0y=2, P3=2and a; =1+ 1%, 00 = t, 3 = t%;

the Robin boundary condition is ¢ = —t32® — 32 — 223 — 2t22% — 20 — 2 + ta* —
2t + 2° + 22
the addition information is given at the observation points: z;, = (z1, 1) =

<_0757 _1)7 Tj, = <x27 3/2) = (0745 _1)7 Tjs = (.1'3, y3) = (_0787 _1)
We use mesh with the number of nodes N; = 799. The result of calculation is shown
in Fig. 2 a).

15

051

05 I I I I I I I I I I 1 I I I I I I I I I I
-1 -08 -06 -04 -02 0 02 04 06 08 1 -1 -08 -06 -04 -02 O 02 04 06 08 1

a) b)d=0,1,i=3
Fig. 2. Results of recovering o;
We can see that the initial curves and the results of calculations almost coincide. Next,

we consider the same data but perturb the data with some random variable (Fig. 2 b). The
perturbations of the overdetermination data at the moments of time Atk, k=1,2,.... M
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(At is a step in time) are defined as follows: 1y (Atk) = u(Atk)(1 + 6(204 — 1)), where
the numbers oy, € [0, 1] are determined using the random number generator of Matlab
(the function rand).

Next, we present another example with interior observation points. We take the meshes
(Fig. 3).

08 r
06
04 r

0.2

-0.21
-0.4
-0.6
-0.8

s 1 apfirstoexpesiment  1s 15 1 b) geconel experiment s

Fig. 3. Meshes a) N; = 323; b) N, = 301

We use the first mesh (N; = 323) and the above data but the additional information
is given at the following observation points (Fig. 4 a): z; = (21, v1) = (—0,5,-0,5);
Lj, = (x27 y2) = (0747074)7 Tjz = (1'3, y3) = (_0787 _07 1)

15

051 1 05

or ] or
05 . 05 /

I I I I I I I I I I I I I I I
-1 -08 -06 -04 -02 0 02 04 06 08 1 "4 08 06 04 02 0 02 04 06 08 1

a) first experiment b) second experiment

Fig. 4. Results of recovering the functions o

In the second case we take the mesh with Ny = 301 and consider the case of the
following interior observation points: z;, = (z1, 11) = (0,4,—0,5); z;, = (22, y2) =
(0,3,0,7); xj, = (3, y3) = (—0,5,0,5). The data are as follows:

the solution is u(z,t) = ot + 2?yt + (x + 1) - (y + 1);

the initial data are u|i—o = (z + 1) - (y + 1);

the additional information is v;(t) = u(y;,t); (y; are observation points)

the coefficients are a = (¢t + 1)(22 + 1), by = t2®, by = 0, 1 = (x +2) - (z + 1),
co = 4/(102% + 1);

the right-hand side is f =zt +tyz? + (z+1)- (y+1)—1—z- (> +2) —y- (t — 2)%).

The coefficient 8 =1 +at +t2 + 233 If &, = 1, &y = 2, B3 = 2% then a; = 1 + 2,
Qg = t, 3 = t3.
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the Neumann boundary conditions are g = cou, — ful,—o = ca(taz?® + (z + 1)) — Bzt +
r+1)=-1—z—t'2* + (-1 -z —2%) + (41 +2))/(1 + 102?) + 3(—z — 23 — 2*) +
t(2/5 — 2z — x* — 2/(5(1 + 10z?))).

First calculations (Fig. 4 b) are made in the case of the data without noise, i. e., § = 0.
Next, we add 5, 10, 15 and 25 percent random noise (Fig. 5).

15 15F
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-1 -08 -06 -04 -02 O 02 04 06 08 1 -1 -08 -06 -04 -02 O 02 04 06 08 1
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. . . . . . . . . 05 A . . . . . . . . .
-1 -08 -06 -04 -02 0 02 04 06 08 1 -1 -08 -06 -04 -02 0 02 04 06 08 1

0,15 0,25

Fig. 5. Results of calculations with a random error for am

Summing up, we can say that the algorithm shows good sustainability because as we
can see in experiments in the second case (Fig. 5), we can get correct information especially
using some smoothing algorithms. Decreasing the variable € leads to an increase in the
computation time 7, but does not lead to a significant increase in accuracy. We also see
that the dependence of the calculation time on the time step is inversely proportional.

Finally, we present summary table of experiments with the last data and different o
and e. Denote by 7 the time of the work of the algorithm in seconds. Introduce the error
of the algorithm by the equality ¢y = max |0 — A (Atm)|, where m = 1,2,..., M.

Conclusion

Using theoretical results on well-posedness of the problem we construct a numerical
algorithm for recovering of the heat transfer coefficient with the use of point observations
of the temperature. It is based on the conventional methods (in our case the finite element
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Table

Results of numerical experiments for the second mesh

No exp. Grid ) € €0 T
1 Ny 0 1073 0,0045 5,34
2 Ny 0 1074 0,0051 5,95
3 Ny 0 107 0,0052 6,13
4 Ny 0 10°° 0,0061 6,67
5 Ny 0,1 1073 0,0132 5,8
6 Ny 0,1 1074 0,0134 5,89
7 Ny 0,1 107° 0,0145 6,23
8 Ny 0,1 10°° 0,0167 6,55
9 Ny 0,2 1073 0,0262 6,16
10 Ny 0,2 1074 0,0279 6,74
11 Ny 0,2 107° 0,0278 7,02
12 Ny 0,2 10-¢ 0,0291 7,43

method and difference schemes). The results of numerical experiments are presented. The
obtained results reveal the accuracy, efficiency, and robustness of the proposed algorithm.
It is stable under random perturbations of the data.
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BOCCTAHOBJIEHUE KOS®PUIIMNEHTA TEIIJIOITEPE/IAYN
I10 PE3VJIBTATAM U3MEPEHUI TEMIIEPATYPEI

C.H. Illepzun', C.I'. Ilamxos
TOropcekuit rocyaperseHnblil ynusepeuTet, I. XanThl-MaHcuiick,
Poccuiickas @ejieparius

Teopusi 0OpaTHBIX 3a7aY HUCIOJIB3YETCs, 9TOOBI BOCCTAHOBUTH KOIMMUIMEHT TEIIo-
nepejadn B 3a/avax TeIJIOIPOBOJHOCTH, UCIOJIb3Ys 3aMepbl TEMIEPATYPhl Ha I'DAHUIIE.
YucjieHHOE pellleHre OCHOBaHO Ha METOJIe KOHEYHBIX 9JIEMEHTOB 110 IIPOCTPAHCTBEHHBIM IIe-
PEMEHHBIM, METO/I€ KOHEUHBIX PA3HOCTEH 110 BPEMEHH U CIIEIUAIbLHON UTEPAIIMOHHON CXEeMBbI
JUIst onpejieieHust Ko duimenTa Terionepeadn Ha KaxKJI0M BpeMeHHoM cjoe. Koaddu-
LIEHT TeIIONePeIauy UINEeTCA B BUJIe KOHEYHOIO OTPE3Ka Psla ¢ HEU3BECTHBIMU KoM UIm-
enramu Oypbe, 3aBUCAIIIMA OT BpeMeHU. AJIFOPUTM pellleHNsT OIIMPAETCSI HA TEOPETUIECKHE
Pe3yJIbTaThl, yTBEPKIAIOIIKe, YTO 3a/1a9a KOPPEKTHA U CBOIUTCS K OIIePaTOPHOMY ypaBHE-
HUIO CO CXKUMAIOIIUM OIepaTOPOM. Pe3ysIbTaThl YUCIEHHBIX SKCIIEPUMEHTOB MO ITBEPK IAI0T,
4YTO 3aja4a JefiCTBUTEIbHO KOppEKTHA. [lojiydeHHbie pe3ysibTaThl OKA3BIBAIOT TOYHOCTD,
3P PEKTUBHOCTD ¥ HAJIEXKHOCTD IPEIJI0KEHHOI0 aropuTMa. OHU yCTORUNBEL K CJIy YAHBIM
BO3MYIIEHUSAM.

Karouesvie caosa: obpammas 3adaywa; kosdduyuenm mensonepedayu; napabosudeckoe

ypasrHerHue;, mMmenaomacconeperoc.
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