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The article is devoted to the study of the stability of a stationary solution to the Cauchy
problem for a non-autonomous linear Sobolev type equation in a relatively bounded case.
Namely, we consider the case when the relative spectrum of the equation operator can
intersect with the imaginary axis. In this case, there exist no exponential dichotomies and
the second Lyapunov method is used to study stability. The stability of stationary solutions
makes it possible to evaluate the qualitative behavior of systems described using such
equations. In addition to introduction, conclusion and list of references, the article contains
two sections. Section 1 describes the construction of solutions to non-autonomous equations
of the class under consideration, and Section 2 examines the stability of a stationary solution
to such equations.
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Introduction

The study of the stability of stationary solutions to abstract operator-differential
equations allows us to obtain results on the qualitative behavior of a system described
using equations of this type [1,2]. Using such results for specific models, it is possible to
obtain values of characteristics that guarantee the stability of the simulated system.

In this article we investigate the properties of stationary solutions for a system of
non-autonomous linear equations of the Sobolev type

Lu(t) = a(t)Mu(t) + f(t), ker L # {0}, (1)

where L and M are linear bounded operators acting from the space i to the space §,
a vector-function f : R — § characterizes the external impact on the system, and a scalar
function « : [0,7] — R, characterizes the change in time of the parameters of this
system. Here and below 4 and § are some Banach spaces. The properties of solutions
to non-autonomous equations resolved with respect to the time derivative were studied,
for example, in [3]. Sobolev type equations are understood as equations unresolved with
respect to the highest derivative [1,2,4,5]. A characteristic feature of such equations is the
fundamental unsolvability of the Cauchy problem

u(0) = uyg

with an arbitrary initial data ug, which can be even from a dense set in  [1,6]. For the
existence of solutions to the Sobolev type equation, it is necessary that the initial data
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belong to some set of permissible initial values, which is understood as the phase space of
these equations |7].

The solvability of non-autonomous Sobolev type equations of the form (1) was first
considered in [8] and the proposed methods were applied to study various problems.
To construct a solution to non-autonomous equation (1), we use the technique proposed
in [9]. The stability of solutions to Sobolev type equations with constant coefficients was
studied by many authors, more details on this can be found in [8] and [10]. In this paper, the
stability of a stationary solution to equation (1) is considered under general assumptions
about the position of its relative spectrum. Thus, exponential dichotomies of solutions [§]
do not necessarily exist for it, and therefore we use the second Lyapunov method [10,11]
to study the stability.

1. Solvability of Non-Autonomous Sobolev Type Equation

Let L and § be Banach spaces, the operators L € L(4; F) (linear and continuous) and
M € Cl(4; F) (linear, closed and densely defined).

Consider an L-resolvent set  p*(M) = {up € C : (uL — M)™' € L(F;L)} and
an L-spectrum ol (M) = C\ p¥(M) of the operator M ( [5], par. 2.1). The set pl(M) is
always open, so the L-spectrum ol (M) is always closed. Also, the operator (uL — M)~}
is a holomorphic function of the variable p on the set p”(M).

Definition 1. |[7] The operator M is called spectral bounded relatively to the operator L
(or simlpy (L,0)-bonded), if Ja>0 VYueC (ju|>a)= (ue p-(M)).

Let the operator M be (L, o)-bounded then we choose the loop y={ueC: |u|=r>a}

1
and construct the operators P = —/RL )dp and Q = T/LL(M)du,
i
where the operator R} (M) = (uL — M)™'L is a right L-resolvent of the operator M,
and the operator L’ (M) = L(uL — M)~ is a left L-resolvent of the operator M. Here the

integrals are understood as Riemann integrals. So the operators P € L() and @ € L(F).

Lemma 1. Let the operator M be (L,o)-bounded then the operators P € L(i) and Q €
L(F) are projectors.

Denote 4% = kerP, F° = ker@, Y!' = imP, F' = im@Q. Denote the restriction of the
operator L to the set {* by L, and the restriction of the operator M to the set domM NU¥,

k = 0,1, by M. Due to the properties of operators, linear sets domM;, = domM N U* are
dense in U*, k=0, 1.

Theorem 1. |7] (Sviridyuk’s splitting theorem)
Let the operator M be (L, o)-bounded then
(i) the operators Ly € L(U%;F°) and Ly € L(U'; F);
(ii) the operators My € CI(4%; F°) and M; € L(U';F);
(iil) there exist the operator L' € L(F';UY) and My € L(FY;U).

Denote H = My 'Ly € L(U°), S = L' M, € L(UY).

Definition 2. For the L-resolvent (uL — M)~ of the operator M, the infinity point is
called
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(i) a disposable singular point, if H = O
(ii) a polar of the order p € N, if H? # Q and HP*! = O
(iii) an essentially singular point, if HP? # O for all p € N.

Remark 1. For further discussion, it is more convenient to refer to the disposable singular
point as a “pole of the zero order”. Then the operator M is called (L,p)-bounded, p €
{0} UN = Ny, if M is (L, o)-bounded, and the point co is a pole of the order p € Ny of
its L-resolvents.

A vector-function v € C*(R; ) is called a solution u = u(t) to the equation
L = Mu, (2)

if u satisfies this equation. The solution u(t) to equation (2) is called the solution to the
Cauchy problem for equation (2) if u additionally satisfies the Cauchy condition

for some vector vy € L.

Definition 3. A set P is called a phase space of equation (2), if
(i) any solution u = u(t) of (2) belongs to P as a trajectory (i.e. u(t) € P Vt € R);
(ii) for any ug € B there exists a unique solution to problem (2), (3).

Theorem 2. |[7| Let the operator M be (L,p)-bounded (p € Ny) then the phase space of
(2) is the subspace U'.

Definition 4. [5] We refer to the operator-function U~ € C*°(R; ) as a group of resolving
operators (or, in short, as a group) of equation (2) if

(i) UsUt = Ut for all s, t € R ;

(ii) for any ug € 4 the vector-function u(t) = Utug is a solution to (2).

Let us identify the group and its graph {U" : t € R}. The group {U" : t € R} is called
holomorphic if {U* : t € R} is analytically continuous into the entire complex plane C
under Properties (i), (ii); and is degenerate if its unit U° is a projector. For a holomorphic
degenerate group, the concepts of kernel and image are correct, and ker U = ker U° =
ker U! for any t € R, and imU* = im U" = im U* for any ¢t € R. A holomorphic degenerate
group {U" : t € R} is called the resolving group of equation (2) if its image im U- coincides
with the phase space of equation (2).

Theorem 3. [7| Let the operator M be (L, p)-bounded (p € Ny) then there exists a unique
resolving group of equation (2), which has the form
Ut = QLm RY(M)etdp, t € R, (4)
R

where v = {p € C: |u| =r > a} is the closed loop.
Remark 2. It is clear that the identity of group (4) is UY = P.
On the interval J C R, consider the Cauchy problem (ty € J)
u(to) = wo, (5)
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for the homogeneous non-autonomous equation
Lu(t) = a(t) Mu(t). (6)

Definition 5. [9] The vector-function u € C*(J;4) is called a solution to equation (6) if
u satisfies this equation on J. A solution to (6) is called a solution to the Cauchy problem
(5), (6), if it additionally satisfies condition (5).

Theorem 4. [9] Let the operator M be (L,p)-bounded (p € Ny) and the function o €
C(R,R,) then a phase space of equation (6) is the subspace L.

Definition 6. [9] The two-parameter family U(-,-) : R x R — L£() is called a family
of resolving operators, if the following conditions hold :

(i) U(t,t) = P for all t € R;

(i) U(t,s)U(s,7) = U(t, 1) for all t, 7, s € R.

A family of resolving operators is called analytic if its operators admit an analytic
continuation into the entire complex plane C under Properties (i) and (ii) from Definition
6. The two-parameter family of operators U(-,-) : R x R — L(4) is called a family
of resolving operators of equation (6) if for any ug € 4 the vector function u(t) = U(t, o) ug
is a solution to equation (6) (in the sense of Definition 5).

Let the operator M be (L,p)-bounded (p € Ny) and the function a € C(R;R). By
analogy with group (4), consider the operators

Ult,s) =

/RL(M) exp (usftoz(é)dé) dp, s <t (7)

Y

27rz

with s,¢ € R and the closed loop vy ={u € C: |u| =7 > a}

Theorem 5. (9] Let the operator M be (L,p)-bounded (p € Ny) and the function o €
C(R;R), then the family of operators {U(t,s) € L(LU) : t,s € R}, given by formula (7),
15 an analytic degenerate family of resolving operators.

Finally, we describe the solution for the inhomogeneous equation

La(t) = a(t) Mu(t) + g(t), 8)

where a : [0,7] — Ry is a scalar function that characterizes the change in time of the
parameters of the mutual influence of the states of the system under study, the vector
function g : [0,7] — § characterizes the external impact. Denote (Iy — Q)g(t) = ¢°(¢).

Theorem 6. (9] Let [0, T] € J, the operator M be (L, p)-bounded (p € Ny) and the function
a € CPY([0,T);R,). Then for an arbitrary vector-function g : [0,T] — § such that
Qg € CY([0,T];FY), ¢° € CPTL([0,T]; F°) and under the condition of approval

fam? ZHk (i) S
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and for any initial data uy € U there exists a unique solution v C([0,T];4) to Cauchy
problem (5), (8), which has the form

t

1 d)k (%)
(9)

u(t) = U(t.0)Puo + [ UGt 5)L; Qgls)ds — Y HAM (%E alt)’
) k=0

2. Second Lyapunov Method in Normed Spaces

Let *¥ be a normed space.

Definition 7. A local two-parameter stream on U (in shortly, stream) is a map S such
that for all u € U and some 7 = 7(u) € Ry, the following conditions hold:
(i) S=SlueYforallt,se (—7;7);S0u=u;
(i) St = SLSZu for all t,s,2 € (—7, 7).
A point u € U such as
(iii) Stu=wu for all t,s € (—7;7),
is called a stationary point of the stream S.

Definition 8. A stationary point u € U of the stream S is called

(i) stable (according to Lyapunov), if for any neighborhood £, of the point u € U
there exists a neighborhood O/, (may be, another) of this point such that Stv € O/, for all
veP,and t,s € Ry;

(ii) asymptotically stable (according to Lyapunov), if it is stable and for any point v
from some neighborhood 9, of the point u the following is true: Stv — u with ¢ — oco.

Definition 9. A functional V' € C(U;R) is called Lyapunov functional of the stream S,
. J— t —
if for all v € ¥ it has the form V(u) = lim (V{Sgw) = V()

t—0+ t

<0.

Theorem 7. Let u € U be the stationary point of the stream S on U. This point u € U is
stable if for the stream S there exists a Lyapunov functional, which satisfies the following
two conditions:

(i) V(u) =0;

(i) V(v) > ¢(||lv — u||) with some strictly increasing continuous function ¢ such that
©(0) =0 and p(r) >0 forr e R,.

Proof. We follow [10, 11|, where a similar theorem is proved in the case of a stationary
Sobolev type equation.

So, for every r € Ry we put O, = {veU:V(v) <r}. Each of the sets O, is
a neighborhood of the point u, and V € O, = V(Sfv) < V(v) <r for all t € R;.

If V(v) > ¢(]lv—wu|) then for any ¢ € R, there exists r = ¢(¢) > 0 such that
V(v) <r = ||lv—u| < e. Due to the continuity of V', there exists § € R, such that with
|v — ul| < § we have v € O,., and we get Sfv € O, such that ||S{v|| < e for all t € R,.

O

Theorem 8. Let the conditions of Theorem 7 be fulfilled, and suppose that there exists a
strictly increasing continuous function v such that ¥(0) = 0 and ¥(r) > 0 forr € Ry,
and V(v) < =(||lv — ul|), then the point u € U is asymptotically stable.
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Proof. Let the point be v € O,, then by virtue of Theorem 7 V(S{v) is a non-increasing
non-negative function with t € R,..
Let | = t1i+m V(Skv) and suppose that [ > 0, then ti%f |Sgv]] > 0. And we can
—+00 ceR4

conclude that sup V(Stv) < —m for some m € R, which contradicts the non-negativity
teRy

of V(Siv). So V(S§v) and || Shv|| tend to zero at t — +oo.

([
Theorem 9. Let the operator M be (L, p)-bounded (p € Ny) and the function a € C(R;R),
then a family of operators {Stu € L(YU) : ¢, s € R} is a local stream of operators. The zero
point is the stationary point of this stream. And the operators of this stream have the form

St = L/Rﬁ(]%)exp (uia(()d() du, s,teR, s=0<t, (10)

21 .

where the closed contour v bounds the area containing the L-spectrum o™(M) of the
operator M.

Proof. 1t is obvious that the zero point is a stationary point of this stream due to
the linearity of its operators.

Let us show that Stu is a local stream of operators. Statement (i) of Definition 7 follows
from the method of specifying the operator Stg using (7), Property (i) of Definition 6 and
Remark 2.

We show the fulfillment of Statement (ii) from Definition 7. To do this, consider

StSZy = (2712,)2 / R[(M) exp (u tha(g)dg) dp / RY(M)uexp (AZ@(C)dC) d\ =
~ o [ | [ rEODERODuewn (A 0 ) ar ) exp (] ate)ic) du—

v 04

_ (2;)2 / / o (A{a(jdo ? RE(M)uexp (u fa(c)dc) du+

s

+ / RY(M)uexp ()\ tha(g)dg) / - (M{a(i)c@ deA ,

04 o

where the point p € v lies inside the area bounded by the contour 4/, and the point A €
is located outside the area bounded by the contour . Then by Deduction Theorem

exp (Af a(g)dg) i exp (uf a(<>d<) dau

/ pyr — miexp (uft a(g)dg> , / s 0

0l ol

70 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2023, vol. 16, no. 3, pp. 65-73



KPATKIE COOBHIEHI

and we have the fulfillment of Statement (ii) of Definition 7
1 t z
StSPu = 9 /exp (uf a(()d() R)(M)uexp (uf a(()d() dp =
v

t z
= 2%” Rﬁ(]\/[)uexp (u (zf&(g)dg + Sf&(()d()) dp = Stu.
(I
Thus, using a family of resolving operators, it is always possible to construct a local
stream of operators in the sense of Definition 7. For a specific type of operators, using
Theorems 7 and 8, based on information about the points of the relative spectrum o (M),
it is possible to investigate stationary zero solutions for Lyapunov stability.

Conclusion

The results obtained in this paper are planned to be used to study the stability of the
null solution in non-autonomous Hoff models on geometric graphs. These models describe
structures made of I-beams. In such models, at high temperatures, the parameter on the
right side of the equation ceases to be stationary, which explains the appearance of the
time function in the equation. The stability of the solution of such models makes it possible
to more accurately determine the time of maintaining the stability of the structure, which
is an urgent problem when carrying out work to eliminate fires.
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YCTOMYUBOCTHh CTAIIMOHAPHOTI'O PEIIIEHUSA OJHOI'O
KJIACCA HEABTOHOMHEIX YPABHEHUI COBOJIEBCKOI'O TUIIA

A.B. Byesuu!', M.A. Cazadeesa', C.A. 3azpebuna
'TOzkn0-Ypasbcknuii rocy1apcTBeHHbI yHuBepenTeT, . Je1sa6uHcK,
Poccniickas ®enepariust

CraTbst OCBSAIIEHA UCCIIEIOBAHIIO YCTONIMBOCTH CTAIMOHAPHOIO peltenust 3aaaan Ko-
X JIJISE HEABTOHOMHOTO JIMHEHHOT'O YPaBHEHUS COOOJIEBCKOTO TUIIA B OTHOCUTEIHHO OTPAHU-
YEHHOM CJIy4ae. A IMEHHO PaccMaTpPUBAETCs CJIydail, KOTJIa OTHOCUTEIBHBI CIIEKTP oepa-
TOpA ypaBHEHUs] MOXKET IIePeCEeKaThCA ¢ MHIUMON OChI0. B 9TOM cilydyae He CyIIecTBYIOT 9KC-
IIOHEHIMAJIbHbIE JUXOTOMMUH U /IS HUCCJIEJOBAHUS YCTOHYMBOCTU IIPUMEHSETCA BTOPOil Me-
Tojt JIamyHOBa. YCTOWYMBOCTD CTAIMOHAPHBIX PEIIEHUI MTO3BOJISIET OICHUTH KAIeCTBEHHOE
[TOBEJIEHNE CUCTEM, OIUCHIBAEMbIX C IIOMOINBIO TaKuX ypaBHeHuii. CTaTbsi KpOMe BBEIEHUSI,
3aKJII0YEHNsT U CIUCKA JINTEPATYPBI COIEPAKUT JB€ YaCTU. B 1mepBoil U3 HUX ONUCHIBAETCS
IIOCTPOECHHUE PENICHUII HEaBTOHOMHBIX yPaBHEHUII pacCMaTpUBaAEMOro KJjacca, & BO BTOPOK
HCCIeyeTcd yCTOUYNBOCTh CTAIIMOHAPHOIO PElleHNsd TaKUX YPaBHEHUIL.

Karouesvie ca06a: 0mmocumensho 02panusertovil onepamop; emopot memod Jlanymo-
6a; NOKANDHDIT MOMOK ONEPATMOPOE; GCUMNMOMUYECKAA YCTOUYUCOCTD.
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