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Spectral properties of linear operators are very important in stability analysis of
dynamical systems. The paper studies the non-selfadjoint second order differential operator
that originated from a steady state stability problem in dynamic of viscous Newtonian
fluid on the inner surface of horizontally rotating cylinder in the presence of gravitational
field. The linearization of the thin liquid film flow in the lubrication limit about the
uniform coating steady state results into the operator which domain couples two subspaces
spanned by positive and negative Fourier exponents which are not invariant subspaces of the
operator. We prove that the operator admits factorization and use this new representation
of the operator to prove compactness of its resolvent and to find its domain.
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Introduction

Depending on the parameters involved, the dynamics of the film of viscous fluid can be
described by different asymptotic equations. Under assumption that the film is thin enough for
viscous entrainment to compete with gravity, the time evolution model of a thin film of liquid on
the inner surface of a cylinder rotating in a gravitational field was based on the lubrication
approximation and examined by Benilov, O’Brien, and Sazonov |2, 3]. The related Cauchy
problem has the following form:

ye + 1yl =0, y(0,2) =y, y(—m,t)=y(mt), z&|[-mmn|, t>0 (0.1)

where

] = -

Eigenmode solutions are very important in stability analysis, because even a single growing
mode can destabilize an otherwise stable system. In case when all modes are bounded in time and
the corresponding eigenfunctions form a complete set, the system normally regarded as a stable
one. Because, an arbitrary initial condition can be represented as a series of these eigenmodes;
and since all of them are stable, so expected to be the solution to the initial- value problem.

There are however counterexamples to the arguments above when each term of the series is
bounded but the series as a whole diverges and the solution develops a singularity in a finite time.
This effect was observed by Benilov, O’Brien, and Sazonov [2] for the problem 0.1 when parameter
in (0.2) a = 0. For this case when the effect of gravitational drainage was neglected because of
infinitesimally thin film they studied stability of the problem asymptotically and numerically. It
was shown that even for infinitely smooth initial values numerical solutions blow up after a small

((1 —a cosz)y(xr) + bsinx - dz(;)) , a,b>0 (0.2)

number of iterations.
The spectrum of the linear operator L that is defined by the operation [[.] and periodic
boundary conditions y(—m) = y(n) for the special case when the parameter a = 0 was studied
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rigorously in [8, 6, 9]. Using different approaches they justified that if the parameter b restricted
to the interval [0, 2] then the operator L is well defined in the sense that it admits closure in
L?(—m, 7) with non-empty resolvent set without breaking the boundary conditions y(—7) = y(r).
The spectrum of the operator L is discrete and consists of simple pure imaginary eigenvalues only.
As a result all eigenfunctions have the following symmetry yy(—z) = yx(z). The more general
operator with the function sin(z) replaced by the arbitrary 2m-periodic functions was studied in
[4] and it was proved that this operator multiplied by i belongs to a wide class of PT-symmetric
operators which are not similar to self-adjoint but nevertheless possesses purely real spectrum
due to some obvious and hidden symmetries.

The phenomenon of the coexistence of the neutrally stable modes with explosive instability
of the numerical solutions [2]| (which correspond to drops of fluid forming on the ceiling of the
cylinder where the effect of the gravity is the strongest) was studied analytically and explained in
terms of the absence of the Riesz basis property of the set of eigenfunctions in [5]. The question
of a conditional basis property of the set of eigenfunction is still open.

For the case when a # 0, as it was discussed in [3], the spectral properties of the operator L
are not expected to differ a lot from the case a = 0.

The goal of this paper is to find a factorization of the operator L (under some restrictions
on parameters a and b) that would be in some sense similar to one we constructed for the special
case a = 0 in |7] (in this case the operator L is J-self-adjoint with the operator J defined as a shift
J(f(x)) = f(m — x)) and to examine some properties of the operator L using this factorization.
The main difficulty to overcome here is an existing coupling between two subspaces spanned by
positive and negative Fourier exponents which are not invariant subspaces of the operator L if
a # 0. We also prove that the non-self-adjoint differential operator L has compact resolvent and
as result spectrum of L is discrete with the only accumulating point at infinity.

1. Factorization of the non-self-adjoint operator L

We denote by ©(T") and R(T") the domain and the range of linear operator T respectively.
The notation £2 is used for the standard Lebesgue space of scalar functions defined on the interval
(—=m,m). From here on L is the indefinite convection-diffusion operator L :

L2 02 (Ly)(z) = d% <(1 —a cosz)y(z) +bsinx - dz(;)> , b#0

with the domain of all absolutely continuous 27-periodic functions y(x) such that (Ly)(z) € £2.
The latter means, in particular, that we consider y(z) such that the function

<(1 —a cosx)y(x) + b sing - dg(x)>

T

can be defined at zero as a continuous function and by this way it is converted in an absolutely
continuous function.
In addition, we define the operator S :

L2 L%, (Sy)(x) =y (x),
where y/(x) € L2, y(—7) = y(7), and the operator M : £L? — L2,

dy(z)

(My)(z): = (1 —a cosx)y(x)+bsinz -

with the domain of all functions y(z) € £? absolutely continuous on (-, 0) U (0, ) and such
that (My)(z) € £2. Note, that, for example, y(z) = 2~1/3 € D(M). The operator M can also be
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represented by the following expression
(My)(z) = (1= (a+b) cosz)y(z) + b(sinz - y(at))/.

Theorem 1. If the parameters a and b satisfy the inequality 2a + b < 2, then L is a closed
operator with a closed range and L = SM.

Proof. Let us consider the operator A :

L2 L% (Ay)(z) = (sin(2)y(z))

with D(A4) = {y(z) | y(x), (Ay)(z) € L2}. Then D(A) = D(M) and a function y(x) € D(A) can

be written as

y(z) = — L ((c(l + Signz)/2 + ¢1(1 — Signz)/2) + /Oxe(t)dt>, 0(t) € L2 (1.1)

sin(z)

If z > 0 then

\/ t)dt] < a(z) - x'/2,

where a(z) = ( [y [0(z de) . Since the two summands in (1.1) have different growth orders
as x — 0 thls implies that if y(x ) € £? then ¢ = 0 and

= s / o(t (1.2)

21/2

Moreover,

ly(2)] <

A small modification of the same reasoning leads to the following estimation for every x € (—m, )

a(z). (1.3)

sin(z)

o el 1.4
with a(z) = | [;|0(z |2d$‘1/2
Alternatlvely the same function y(x) can be written as
1, T )
= - (¢ — . 1.
W) = g = [ 0w, o (1.5)

with the same 6(x) as in (1.1). Representation (1.5) yields the following relations

y(a _Sm /9 (1.6)

and ( /2
T—x
ly(z)| < W - B(x) (L.7)
with B(x ‘f 10(z \2da:}1/2
It follows from (1.2) and (1.6) that
/7r O(t)dt = 0. (1.8)
0

106 Bectuuk FOYpI'Y. Cepus <«MaremaTudeckoe MOAEJNPOBAHUE U IIPOrpPaMMHUPOBaAHUE>



MATEMATUYECKOE MOJIEJIMPOBAHUE

Starting from the point —m one can also obtain that

1 x
y(z) = Sn () -/7r 0(t)dt, (1.9)
T+ x)l/?
o)l < = (1.10)
with v(z) = ([*_|0(x)[2dz|"* an 0
/ 0(t)dt = 0. (1.11)

Now we are ready to calculate M*. Using smooth functions y(z) such that y(z) = 0 in some
neighborhoods of the points —7, 0 and 7 (neighborhoods depend of y(x)) it is easy to show that

(M*2)(z) = (1 — a cosz)z(x) — b(sinz - z(x))/
for every z(xz) € ©(M™). Since the condition z(z) € D(M™) yields
2(z) € £? and (M*z)(x) € L?, (1.12)
z(x) € ®(A) and for z(x) the conditions of the type (1.4), (1.7) and (1.10) are satisfied. So,

lim y(x)z(z)sinx = lim y(z)z(z)sinz = lim y(x)z(z)sinx =0 .

z—0 r——7+0 rz—7m—0

Taking into account the latter one can check that
(My7 Z) - (yv M#Z)

for every y(z),z(x) € (M) = D(A), where D(M#) = D(A) and M# is defined by the same
differential expression as M*. Thus, ©(M) = ©(M*). The same reasoning shows that M** = M,
so M is closed.

Let

dz(xx) =u(z), ylz),uz) e L2

Our aim is to express y(z) via u(z). Let z € (—m, 7),  # 0. Then y(x) =

(1 —acosz)y(x)+bsinz-

(c(1+ Signz)/2 + ¢1(1 — Signz)/2) - (sin l2)*/" - (cot || /2)Y/° +

%(Sin 1) - (cot [z]/2)1/? /Iu(t)(sin\t)_z (sint)~L - (tant|/2)/bdt,
0

where ¢ and ¢; are constants. The estimations that follow closely depend of a relation between a
and b. We assume that 2a + b < 2. Then for > 0

[ om0 a2 = [Coe0-E0 - @)y
0 0
where v(t) = u(t)(sin t)—(%+1) . (tant/2)1/b(t)(%+1) ()1, so

\/ )(sint) =G+ . (tant/2)Y0dt] <

b 22ab 2 1/2
\/2_2(1_19 x /|v dt
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Thus, the first summand (if ¢ # 0) for y(x) has the order 2“5 and the second one has the order
x~12a(x) with lir% a(z) = 0. Since y(z) € L2, ¢ = 0. The same reasoning shows that ¢; = 0.
Thus,
1 * a
y(z) = g(sin\x|)a/b.(cot yx|/2)1/b/ w(t)(sin [¢]) 7% - (sint) " - (tan|t]/2)"/0dt. (1.13)
0
In particular, for u(x) =1 we have

() = 3 Ginle) - (cotfal/2)° [ (sinle)F - (sine) - (vane/2)! V.
0

Some elementary estimations show that there are finite limits lir% yo(x), lim yo(z) and lim yo(x)
r— Tr——T r—T

with lim yo(z) = lim yo(z). Let us show these relations. First, for ¢ > 0 we define w(t): =
Tr——T r—T

int\—5—1 /tan(t/2)\1/b . . b
(sty et ()T Then tl_l)rerlow(t) = (1/2)"/*. Moreover, for > 0

yo(z): = Ilj(sinx)a/b.(cotx/g)l/b/ w(t)t— 51+ gy,
0

SO

1 b a
Yyo(x) = E(Sinx)a/b - (cot x/2)1/bmw(§x)($)_3+l/b,
where &, € (0,z). The latter yields y(0): = 1im+0y(:r) = L. Second, for t < 7 we define
L sin —-2_1 m—t 1/b . _ L
wy(t): = (2|7 (% -tan(t/2))"". Then t_}#?_ow+(t) =1 and for z(z): = (1+a)-

yo(z) - (sin(x/Q))% we have

].+a a+1

2(z) = — (sin:r)b-/Oxw+(t)(7r—t)§11/bdt.

Let us fix € > 0 Then there is 6 > 0 such that 1 — e < wi(z) < 1+ € for every x € (7 — J, 7).
Next, for the same x

1 a
2(z) = Z“(sm 2)

/m wy (1) (m — )" 1 at).
T—0

Since

/ﬂx6w+(t)(7r — )" 1 bgt) = 1Jbraw(uz,5)((7r —x) T =6

with v, 5 € (7 — 9, m),

b a a z a
(1—e((m—a)™ " =67 %") < / wa (£)(m — )31t <
14+a T4
b lta _1ta
1+a<1+6)((ﬂ'—$) b—67 )
Moreover, for fixed
T—0
lim (sinx) o / wy (t)(m — )" v g =0
t—+m—0 0
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and
1; . atl . _1+4a _
t_}g}_o(sm:ﬂ) b w(vgs)d b =0,

so the equality lim yo(z) = l—i-% is practically evident. Note also that yo(z) is even.
T—T

Thus, the function yo(z) is Continuous on [—m, 7| and satisfies the periodic conditions.
Now let u(z) = ¢+ [) ¢(t)dt, where ¢ = const and ¢(x) € L. Then for z > 0

| J§ o(t)dt] < :cl/Q(fO | (t) )1/2. The latter estimation and (1. 13) yield lim y( )= c‘yO(O) The
same function can be re-written as following u(z) = ¢y + f t)dt or u(m) =c_+ f t)dt.
Then the estimations | [ ¢(t)dt| < (7 —x) 1/2( [Z1o(t) ) ,x € (o,m)and | [ dt| < (7r—|—
)1/2(f77r lo(t)] )1/2, x € (—m,0) together with Representation (1.13) yield il_rgr y(x ) = cq-yo(m)
and lim y(x) = c_-yo(—m). Thus, y(z) satisfies the periodic condition if and only u(z) satisfies.

The :i;‘)cggr yields the equality
L=SM. (1.14)

Moreover, we have shown that for every u(z) = ¢+ fo t)dt with ¢(x) € L£? there is absolutely
continuous on [—, 7] function y(z), such that (My)(x) = u(x), so |’(M) is dense in L? or,
equivalently, Ker(M*) = {0}.

Note, that M is boundedly invertible. Indeed, M = D + iC, where C: L? — 2,

(Cy)(x): = z{g coszy(z) —b(sinz - y(:v))’}, D(C) =2D(M)

and D: L% — L2,
(Dy)(z): = (1—(a+ g) cosz)y(z).

Since D is bounded, D(C) = {y(z) | y(x), (Cy)(x) € L*} and a similar reasoning shows that
D(C) = D(A). Thus, if y(x), z(x) € D(C), then for y(z) and z(x) Conditions (1.7) and (1.10)
hold true, so

2{% sin(m — e)y(m — €)z(m —€) = l{% sin(—m + €)y(—7m + €)z(—m +¢€) = 0.
Since C* is defined by the same differential expression as C, the above equalities show that
D(C*) =D(A). Thus, C is self-adjoint. Moreover, D is positive and boundedly invertible, so the
problem of invertibility of M is equivalent to the problem of regularity of non-real numbers for a
self-adjoint operator (for a more detail reasoning see, for instance, [7]).

Now let us prove that L is closed. The operator S restricted to the subspace £; C L2 of
functions orthogonal to constants has a bounded inverse. Let us find M~1(£y). If (My)(z) €
Ly, then [T (My)(z)dz = 0, but [" (y(z)sinz)'dz = 0, so y(z) € M~(Ly) if and only if
y(z) € D(M) and [T (1 — (a+b) cosz)y(z)dz = 0. Let Ly: = {(1 —(a+0) Cosx)}l. Since
for yo(z) we have 2r = [T (Myo)(z)dz = [7_yo(z)(1 — (a + b) cosz)dz, yo(z) & Lo and
L% = Lo+{p - yo(z)}uec. Now let a sequence {yx(z)} be such that yx(z) — y(z) and zx(z) =
(Lyx)(z) — 2(z). Then (Myy)(x) = vi(z) + cx, where v(z) = ((Sle,)2)(x), cx = const,
k =1,2,... . Since (S|z,)"! is bounded, the sequence {vy(z)} has a limite v(z). In turn, in
virtue of similar reasons the sequence wy(z) = (M ~lv;)(x) also has a limite. Simultaneously
yk(z) = (M~ (vp + Cr))(z) = wr(x) + cxyo(z). Thus, the sequence {ci} has a limite. The rest is
straightforward.

O
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Corollary 1. If the parameters a and b satisfy the inequality 2a + b < 2, then the set ©(L) is
the linear sub-manifold H of the Sobolev space H'(—m, m):

@(L):HifGHl(—ﬂ',ﬂ'), f(ﬂ-):f(_ﬂ-a) Sin(:l})f/GHl(—T[‘,ﬂ')
and is a Hilbert space with the norm defined as:

A1 =[£I + [ sin(@) £ ()] [

The reasoning of this corollary is the same as the reasoning of the corresponding proposition in

[7].

For the next step we need the following simple remark.

Lemma 1. Let H be a Hilbert space, x1, 29 € H, (x1,22) #0. Let Hy: = {x1}*, Ho: = {xo}t.
Let P and Ps be ortho-projections onto the subspaces Hi and Ha respectively. Then Paly, is one-
to-one mapping onto Hs.

Proof. Let Hs: = Hji N Ha. Without loss of generality we can assume that ||z1] = [|z2] = 1,
(x1,22) = a > 0. Then Hy = {p- (2 —a-21) buec ® Hs, Ho = {p- (x1 — - x2) } pec ® H3. Since
Py, = Iy, and Po(x2 —a-x1) = - (£1 — o - x2), the rest is evident.

Od
Theorem 2. If the parameters a and b satisfy the inequality 2a + b < 2, then the resolvent of L
is compact of the Hilbert-Schmidt type.

Proof. Let Lo C £? be the subspace of constants, £1: = Lg. Since Lo C D(L) and R(L) = Ly,

the operator L has the following matrix representation

0 0
I =
[ Ly Ln }

with respect to the decomposition £2 = L@ L1, where the operator Lip: 1 — a-sinz is bounded
and D(Ly1) = {(2)|f € H(—m,7), f(x) = f(—), sin(x)f'(z) € H'(—m,7), |7, f(x)dx =
0}. Let us analyze the properties of Li;. From Theorem 1 we have Ly = SM|.,. Let Lo =
M(®D(M)NLy), yo(x) = (M~11)(x), z0(x) = (M*)~11)(x). Then for y(z) € D(M)N L1 we have
0= (y,1) = (y, M*z) = (My, 20), so Lo = {z}*. From the other hand, (1,z) = (Myo, 20) =
(yo, M*z0) = (yo, 1). Since (see the proof of Theorem 1) (yo,1) # 0, the pair {1, 29} is under the
conditions of Lemma 1. Let P; be the ortho-projection onto £1. Then Li; = S - (Pi|z,) - (M|z,),
so Lt = (MY z,) - (Piley) ™' - (S|z,) ™" Thus, Ly} is an operator of the Hilbert-Schmidt type.
Since

RA(0) 0

R\(L) = ,
ML) LR\(L11)Lio R(L11)

the rest is straightforward. -
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VK 517.984

O ®AKTOPU3AIINU OTHOTO IU®PEPEHIINAJJIBLHOTO
OIIEPATOPA, BOSHUKAIOIIIETO B TUIPOJINMHAMUKE

M.B. Yyeynosa, B.A. IIIlmpayc

CrekTpaJibHble CBOICTBA JIMHEHHBIX OMEPATOPOB UIPAIOT BAXKHYIO POJIb B AHAIU3E
YCTOMYUBOCTH IMHAMUAYECKUX CUCTEM. B 3aMeTKe UCCIIeqyIOTCA CBONCTBA HECAMOCOIIPSI2KEH-
HOTO M PePEHITNATHHOTO OIIEPATOPa BTOPOTO IOPSI/IKA, CBSI3aHHOTO C UCCJIE/IOBAHIEM IIPO-
OJ1eMbl YCTONYINBOCTH CTAITMOHAPHOI'O JTMHAMUYIECKOTO COCTOSHUS TOHKOM TLIEHKH, 00pa30-
BaHHOU BA3KONA HBIOTOHOBCKOM KUIKOCTBIO U PACIIOJIOXKEHHON Ha BHYTPEHHE IIOBEPXHOCTU
BPAIAIONIErocs MUJINHIPA, [IPU HAJWYUN T'PABUTAIIMOHHOTO IOJs. JImHeapwsanusa mo ma-
JIoMy napamerpy (OTHOINIEHUIO TOJIIMHBL IOTOKA K Pa3Mepy IMJIMHIPA) B 9TOM CJIydae [o-
poxaaeT muddepeHnuaIbHbIil OepaTop ¢ 00JACTHIO ONPEIE/ICHNs, BJIOYKEHHONU B IPAMYIO
CYMMYy JIBYX IOJIIPOCTDPAHCTB, HATSHYTBIX, COOTBETCTBEHHO, Ha Gasucel {e*} u {e~ne}
(n > 0), npuyeM yKasaHHbIE OANPOCTPAHCTBA HE ABJIAIOTCH UHBAPUAHTHBIME 110 OTHOIIIE-
HHAIO K OMEPATOPY, W OJTHOMEPHOTO IOJAIIPOCTPAHCTBA KOHCTAHT. /lOKa3bIBaeTCs, ITO ITOT
OIIepaTop JOIYCKAET MPEICTABJICHUE B BUJIE MPOU3BEIACHUS ABYX anuddepeHITNaATIbHBIX OIle-
paTopoB mepBoro nopsizka. [logydennoe npeicraBieHne NCIOIb3YETCH [IJIsd TOKA3ATETbCTBA
KOMIIAKTHOCTH PE30JIbBEHTHI HCCJIEyeMOr0 OIIEPATOPa U HEIIOCPEICTBEHHOI'O OIIICAHUS €T0
00JI1aCTH OIIpEJIeIEHMUSI.
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