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We consider a Leontie�-type stochastic equation, that is, a system of di�erential

equations implicit with respect to the time derivative in the spaces of random processes. The

concepts previously introduced for the spaces of di�erentiable "noise" using the Nelson�

Gliklikh derivative carry over to the case of complex-valued "noise"; in addition, the

right-hand side of the equation is subject to multiplicative e�ect of a special form. We

construct a solution to the Showalter�Sidorov problem for Leontie�-type equations with

multiplicative e�ect of a complex-valued process of special form. Aside from the introduction

and references, the article consists of two parts. In the �rst part we carry over various

concepts of the space of real-valued di�erentiable "noise" to the complex-valued case. In

the second part we construct a Showalter�Sidorov solution to a Leontie�-type equation with

multiplicative e�ect of a complex-valued process of special form. The list of references is

not intended to be complete and re�ects only the authors' personal preferences.

Keywords: Leontie�-type equations; multiplicative e�ect; Wiener process; Nelson�

Gliklikh derivative; space of complex-valued "noises"; "white noise".

Introduction

In the spaces of random processes, consider the stochastic equation

L
◦
ξ (t) = eiαtMξ(t) +N

◦
W k (t), kerL ̸= {0}, (1)

where α is a real-valued Gaussian random variable, L, M , and N are matrices of complex
coe�cients, ξ(t) is the required complex-valued random process with the Nelson�Gliklikh

derivative
◦
ξ, and Wk(t) is the k-Wiener process.

Ito pioneered the study of linear ordinary stochastic di�erential equations, and later
Stratonovich and Skorokhod joined in. The approach of Ito�Stratonovich�Skorokhod is
still popular [1, 2] in the �nite-dimensional case. Moreover, it was successfully extended
to an in�nite-dimensional situation [3] and even to Sobolev-type equations [4, 5, 6]. The
right-hand side involved the di�erential of a Wiener processes, whose generalized derivative
is traditionally treated as white noise. Let us also mention the approach of Mel′nikova's
school [7], in which ordinary stochastic di�erential equations are considered in Schwartz
spaces, where the generalized derivative of a Wiener process makes sense.

A new approach in stochastic ordinary di�erential equations arose [8] and is actively
developing [9], in which "white noise" is regarded as the Nelson�Gliklikh derivative of
a Wiener processes. This "white noise" is more adequate for the Einstein�Smoluchowski
theory of Brownian motion than the traditional white noise [8, 9]. Originally "white noise"
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was used in the theory of optimal measurements [10, 11], which required constructing
a special space of real-valued "noises" [9]. In this article for the �nite-dimensional case we
carry over the concepts and results of [6, 9] to complex-valued random processes. In these
spaces we construct a solution to a Leontie�-type equation (1) with multiplicative e�ect
of a complex-valued process of special form basing on the deterministic case [11, 12].

1. Spaces of Complex-Valued "Noises"

Take a complete probability space Ω ≡ (Ω,A,P) and the set C of complex numbers
equipped with the structure of a Borel σ-algebra. A measurable mapping ξ : Ω → C is
called a random variable. The set of random variables constitutes a Hilbert space with
the inner product (ξ1, ξ2) = Eξ1ξ2. Denote this Hilbert space by L2. Below the random
variables ξ ∈ L2 with the normal (Gaussian) distribution are important, and we refer to
them as Gaussian variables.

Consider now a σ-subalgebra A0 of the σ-algebra A. Construct the space L0
2 of random

variables which are measurable with respect to A0. It turns out that L
0
2 is a subspace of

L2, Denote by Π : L2 → L0
2 the corresponding orthogonal projection. For ξ ∈ L2 refer to

Πξ as the conditional expectation of the random variable ξ and denote it by E(ξ|A0). It is
not di�cult to observe that E(ξ|A0) = Eξ for A0 = {∅,Ω} and E(ξ|A0) = ξ for A0 = A.
Finally, recall that the minimal σ-subalgebra A0 ⊂ A with respect to which a random
variable ξ is measurable is called the σ-algebra generated by ξ.

Consider now some interval I ⊂ R and two mappings. The �rst mapping f : I → L2

associates to each t ∈ I a random variable ξ ∈ L2. The second mapping g : L2 × Ω → C
associates to each pair (ξ, ω) a point ξ(ω) ∈ C. Refer to a mapping η : I×Ω → C de�ned as
η = η(t, ω) = g(f(t), ω) as a (one-dimensional) complex-valued random process. Therefore,
for each �xed t ∈ I the random process η = η(t, ·) is a complex random variable, that
is, η(t, ·) ∈ L2, while for each �xed ω ∈ Ω the random process η = η(·, ω) is called
a (choice of) trajectory. A random process η is called continuous whenever almost surely
all its trajectories are continuous (that is, for almost all ω ∈ Ω the trajectories η(·, ω) are
continuous). The set of continuous random processes constitutes a Banach space, which
we denote by C(I;C). A continuous random process with (independent) Gaussian random
variables is called a Gaussian process.

The most important example of a continuous complex-valued Gaussian random process
is the (one-dimensional) Wiener process β = β(t) modeling the Brownian motion on
a complex plane in the Einstein�Smoluchowski theory. It enjoys the following properties:

(W1) almost surely β(0) = 0, almost surely all its trajectories β(t) are continuous,
and for all t ∈ R+(= {0} ∪ R) the random variable β(t) is Gaussian;

(W2) the expectation is E (β (t)) = 0 and the autocorrelation function is
E
(
|β (t)− β (s)|2

)
= |t− s| for all s, t ∈ R+.

Remark 1. For the process with properties (W1), (W2) also satirs�re
(W3) the trajectories β(t) are nondi�erentiable at every point t ∈ R+ and of

unbounded variation on every arbitrarily small interval.

A random process β with properties (W1)�(W3) is called Brownian motion.

Fixing η ∈ C(I;C) and t ∈ I(= (ε, τ) ⊂ R), denote by N η
t the σ-algebra generated by

the random variable η(t). Put Eη
t = E(·|N η

t ) for brevity.
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De�nition 1. On assuming that η ∈ C(ε, τ ;C), refer as the (right left) derivative in the

mean Dη(t, ·) (D∗η(t, ·)) of the random process η at t ∈ (ε, τ) to the random variable

Dη(t, ·)= lim
△t→0+

Eη
t

(
η (t+△t, ·)−η(t, ·)

△t

) (
D∗η(t, ·)= lim

△t→0+
Eη

t

(
η (t, ·)−η (t−△t, ·)

△t

))
whenever the limit exists in the sense of uniform metric on R. A random process η is called
(right left) di�erentiable in the mean on (ε, τ) whenever at each point t ∈ (ε, τ) its right
(left) derivative in the mean exists.

Therefore, take a random process η ∈ C(ε, τ ;C) which is right (left) di�erentiable in
the mean on (ε, τ). Its right (left) derivative in the mean is a random process as well,
which we denote by Dη (D∗η). If η ∈ C(ε, τ ;C) is both right and left di�erentiable in
the mean on (ε, τ) then we can de�ne the symmetric (antisymmetric) derivative in the

mean DSη = 1
2
(D +D∗) η

(
DAη = 1

2
(D∗ −D) η

)
. Since Nelson introduced derivatives in

the mean [13] and Gliklikh developed their theory [2], for brevity we call the symmetric
derivative in the mean DS of a random process η the Nelson�Gliklikh derivative and

denote it by
◦
η, that is, put DSη ≡

◦
η. For ℓ ∈ N, denote by

◦
η (ℓ) the order ℓ Nelson�

Gliklikh derivative of η. Observe that if the trajectories of η are almost surely continuously
di�erentiable in the ordinary sense on (ε, τ) then their Nelson�Gliklikh derivative coincides
with the ordinary derivative. For instance, this is so for the random real-valued process
η = α sin(νt), where α is a Gaussian random real-variable and ν ∈ R+ is a �xed constant,
while t ∈ R has the meaning of time.

Theorem 1. (Gliklikh) We have
◦
η (ℓ)(t) = (−1)ℓ+1(2t)−ℓη(t) for all t ∈ R+ and ℓ ∈ N.

Consider the space Cℓ(I;C), with ℓ ∈ N, of random process in C(I;C) whose
trajectories are almost surely Nelson�Gliklikh di�erentiable on I through order ℓ. If I ⊂ R+

then Theorem 1 implies the existence of the derivative
◦
β∈ C1(I;C), which we call a (one-

dimensional) "white noise". In [9] the spaces C1(I;C) are called the spaces of di�erentiable
"noises".

Fixing now k ∈ N, take k independent random processes {η1(t), η2(t), ..., ηk(t)} and
de�ne the k-dimensional random process (or brie�y, a k-random process) as Θ(t) =
k∑

j=1

ηj(t)ej, where ej for j = 1, k are the standard basis vectors in Ck. It is obvious

that almost surely all its trajectories are continuous whenever ηj ∈ C(I;C) for j = 1, k
and Nelson�Gliklikh continuously di�erentiable through order ℓ whenever ηj ∈ Cℓ(I;C)
for j = 1, k. By analogy with the above, introduce the spaces C(I;Ck) and Cℓ(I;Ck) of
continuous and continuously di�erentiable k-dimensional "noises". As an example, consider
the k-dimensional Wiener process (k-Wiener process)

Wk(t) =
k∑

j=1

βj(t)ej, (2)

where βj for j = 1, k are independent Brownian motions. Theorem 1 yields
It follows from (2) that the k-Wiener process Wk enjoys properties (W1)�(W3) with β

replaced by Wk. On assuming this replacement made, we have
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Theorem 2. For each k ∈ N with probability 1 there exists a unique k-Wiener process

Wk with properties (W1)�(W3); furthermore, we can express it as (2).

2. Stochastic Leontie�-Type Equations with Multiplicative E�ect

Take two square matrices L and M of size k with complex entries. Following [6] and
[10], refer to the sets ρL(M) = {µ ∈ C : det(µL − M) ̸= 0} and σL(M) = C \ ρL(M)
respectively as the L-resolvent set and L-spectrum of M . It is not di�cult to show that
either ρL(M) = ∅ or the L-spectrum of M amounts to a �nite set of points. In addition,
observe that ρL(M) and σL(M) are preserved under the changes of basis. De�ne also the
matrix-valued functions (µL−M)−1, RL

µ(M) = (µL−M)−1L, and LL
µ(M) = L(µL−M)−1

on ρL(M) and call them respectively the L-resolvent, the right and left L-resolvents of M .

De�nition 2. For p ∈ {0} ∪ N, call M an (L, p)-regular matrix whenever ρL(M) ̸= ∅
and ∞ is either a removable singular point (for p = 0) or a pole of order p ∈ N of
the L-resolution of M .

Take an (L, p)-regular matrix M with p ∈ {0} ∪ N. Consider the system of Leontie�-

type equations

L
◦
ξ (t) = eiαtMξ(t) +Nw(t), kerL ̸= {0}, (3)

where α is a real-valued Gaussian random variable, ξ(t) is the required random process

with the Nelson�Gliklikh derivative
◦
ξ, and w = w(t) is a random process corresponding

to the outside e�ect.
Impose for (3) the Showalter�Sidorov initial condition[

RL
ν (M)

]p+1
(ξ (0)− ξ0) = 0, ν ∈ ρL(M). (4)

Observe that for the Leontie�-type system [10] this condition is more natural than the
traditional Cauchy condition ξ(0) = ξ0.

Take now I = [0, τ). Call a random process ξ ∈ C1(0, τ ;Ck) a (classical) solution

to (3) whenever almost surely all its trajectories satisfy (3) for some random process
w ∈ C(0, τ ;Ck), a complex matrix N of size k, and all t ∈ (0, τ). Call a solution ξ = ξ(t)
to (3) a (classical) solution to problem (3), (4) whenever condition (4) holds as well.

Theorem 3. Take an (L, p)-regular matrix M for p ∈ {0} ∪ N with detM ̸= 0. Given
a matrix N : Ck → Ck, a random process w = w(t) with

(I−Q)Nw ∈ Cp+1(I;Ck) and QNw ∈ C(I;Ck), (5)

and a random variable ξ0 ∈ L2 independent of w, there exists a unique solution ξ ∈
C1(I;Ck) to problem (3), (4) of the form

ξ(t)= lim
n→∞

[((
L+

i

nα
M
(
eiαt − 1

))−1

L

)n
ξ0+

+

t∫
0

((
L+

i

nα
M
(
eiαt − eiαs

))−1

L

)n(
L− 1

n
M

)−1(
nLL

n(M)
)p

Nw(s)ds+
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+

p∑
q=0

(
M−1

(
Ik−

(
nLL

n(M)
)p+1

)
L
)q
M−1

((
nLL

n(M)
)p+1−Ik

)(
e−iαtDS

)q(
e−iαtNw(t)

)]
.

Proof of this theorem repeats almost verbatim the arguments of [11, 12], taking into
account the features of the space of "noises" [6, 9], and is therefore omitted.

However, the "white noise" w(t) =
◦
W k (t) = (2t)−1Wk(t) doesn't satisfy (5) and we

can't substitute it into (3) and (4). So for equation (1) we consider the weakened Showalter�
Sidorov initial condition

lim
t→0+

[
RL

ν (M)
]p+1

(ξ (t)− ξ0) = 0, ν ∈ ρL(M). (6)

Using the results from [6] and Theorem 3, we obtain next

Corollary 1. Take an (L, p)-regular matrix M for p ∈ {0} ∪ N with detM ̸= 0. Given
a matrix N : Ck → Ck and a random variable ξ0 ∈ L2 independent of k-Wiener process

Wk, there exists a unique solution ξ ∈ C1(I;Ck) to problem (1), (6) of the form

ξ(t) = lim
n→∞

[((
L+

i

nα
M
(
eiαt − 1

))−1

L

)n
ξ0 +

(
L− 1

n
M

)−1[(
nLL

n(M)
)p

NWk(t)−

−M

t∫
0

((
L+

i

nα
M
(
eiαt − eiαs

))−1

L

)n(
L− 1

n
M

)−1(
nLL

n(M)
)p

NWk(s)ds

]
+

+

p∑
q=0

(
M−1

(
Ik−

(
nLL

n(M)
)p+1

)
L
)q
M−1

((
nLL

n(M)
)p+1−Ik

)(
e−iαtDS

)q(
e−iαtNWk(t)

)]
.
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ÑÒÎÕÀÑÒÈ×ÅÑÊÈÅÓÐÀÂÍÅÍÈßËÅÎÍÒÜÅÂÑÊÎÃÎ
ÒÈÏÀ Ñ ÌÓËÜÒÈÏËÈÊÀÒÈÂÍÛÌ
ÂÎÇÄÅÉÑÒÂÈÅÌ Â ÏÐÎÑÒÐÀÍÑÒÂÀÕ
ÊÎÌÏËÅÊÑÍÎÇÍÀ×ÍÛÕ ¾ØÓÌÎÂ¿

À.Ë. Øåñòàêîâ, Ì.À. Ñàãàäååâà

Â ñòàòüå ðàññìàòðèâàåòñÿ ñòîõàñòè÷åñêîå óðàâíåíèå ëåîíòüåâñêîãî òèïà, ò.å. ñèñòå-

ìà äèôôåðåíöèàëüíûõ óðàâíåíèé, íåðàçðåøåííàÿ îòíîñèòåëüíî ïðîèçâîäíîé ïî âðå-

ìåíè, â ïðîñòðàíñòâàõ ñëó÷àéíûõ ïðîöåññîâ. Ïðè ýòîì ââåäåííûå ðàíåå ñ ïîìîùüþ

ïðîèçâîäíîé Íåëüñîíà�Ãëèêëèõà ïîíÿòèÿ äëÿ ïðîñòðàíñòâ äèôôåðåíöèðóåìûõ ≪øó-

ìîâ≫, ïåðåíîñÿòñÿ íà ñëó÷àé êîìïëåêñíîçíà÷íûõ ≪øóìîâ≫, è, êðîìå òîãî, â óðàâíå-

íèè ïðèñóòñòâóåò ìóëüòèïëèêàòèâíîå âîçäåéñòâèå ñïåöèàëüíîãî âèäà íà ïðàâóþ ÷àñòü

óðàâíåíèÿ. Â ñòàòüå ñòðîèòñÿ ðåøåíèå çàäà÷è Øîóîëòåðà�Ñèäîðîâà äëÿ óðàâíåíèÿ

ëåîíòüåâñêîãî òèïà ñ ìóëüòèïëèêàòèâíûì âîçäåéñòâèåì êîìïëåêñíîçíà÷íîãî ïðîöåññà

ñïåöèàëüíîãî âèäà.
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Ñòàòüÿ êðîìå ââåäåíèÿ è ñïèñêà ëèòåðàòóðû ñîäåðæèò äâå ÷àñòè. Â ïåðâîé èç

íèõ ïðîèçâîäèòñÿ ïåðåíîñ ïîíÿòèé ïðîñòðàíñòâà äèôôåðåíöèðóåìûõ ≪øóìîâ≫ ñ äåé-

ñòâèòåëüíîçíà÷íîãî ñëó÷àÿ íà êîìïëåêñíîçíà÷íûé, à âî âòîðîé � ñòðîèòñÿ ðåøåíèå

Øîóîëòåðà�Ñèäîðîâà äëÿ óðàâíåíèÿ ëåîíòüåâñêîãî òèïà ñ ìóëüòèïëèêàòèâíûì âîç-

äåéñòâèåì êîìïëåêñíîçíà÷íîãî ïðîöåññà ñïåöèàëüíîãî âèäà. Ñïèñîê ëèòåðàòóðû íå

ïðåòåíäóåò íà ïîëíîòó, è îòðàæàåò ëèøü ëè÷íûå ïðèñòðàñòèÿ àâòîðîâ.

Êëþ÷åâûå ñëîâà: óðàâíåíèå ëåîíüåâñêîãî òèïà; ìóëüòèïëèêàòèâíîå âîçäåé-

ñòâèå; âèíåðîâñêèé ïðîöåññ; ïðîèçâîäíàÿ Íåëüñîíà � Ãëèêëèõà; ïðîñòðàíñòâî êîì-

ïëåêñíîçíà÷íûõ ≪øóìîâ≫; ≪áåëûé øóì≫.
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