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We consider a generalization of the bottleneck (minimax) routing problem. The problem
is to successively visit a number of megalopolises, complicated by precedence of constraints
imposed on the order of megalopolises visited and the fact that the cost functions (of
movement between megalopolises and of interior tasks) may explicitly depend on the list of
tasks that are not completed at the present time. The process of movement is considered to
be a sequence of steps, which include the exterior movement to the respective megalopolis
and the following completion of (essentially interior) jobs connected with the megalopolis.
The quality of the whole process is represented by the maximum cost of steps it consists of;
the problem is to minimize the mentioned criterion (which yields a minimax problem, usually
referred to as a "bottleneck problem"). Optimal solutions, in the form of a route-track pair
(a track, or trajectory, conforms to a specific instance of a tour over the megalopolises,
which are numbered in accordance with the route; the latter is defined by the transposition
of indices), are constructed through a "nonstandard" variant of the dynamic programming
method, which allows to avoid the process of constructing of all the values of the Bellman
function whenever precedence constraints are present.

Keywords: dynamic programming; route; precedence constraints; sequential ordering
problem.

Introduction

The paper investigates the problem of sequentially walking through a set of
megalopolises, where the cost is aggregated in a nonadditive way and the walk is restricted
by precedence constraints. The cost functions, which measure the quality of the steps of
the process, depend on the list of "pending" tasks. The mentioned dependence may arise
in real-world problems connected with movement through a radiation field, for example,
while dismantling ionizing radiation sources. Other applications are possible as well.

The obvious prototype of the considered problem is the well-known intractable [1]
travelling salesman problem (TSP); see [2-4] et alia. Note papers [5,6] devoted to dynamic
programming solutions of the "additive variety" of the TSP. Branch-and-bound methods
(see [7]) and various approximate methods (see [4,8] et alia) are widely used.

In real-world applications, there exist problem statements conceptually resembling
TSP, however, marked by peculiarities of a specific task; see [2]. Along with the most
studied "additive" TSP and its analogs, problems with nonadditive cost aggregation are of
interest; see [9,10] et alia. In particular, it is of interest to provide for dynamic programming
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solutions of the mentioned "nonadditive" problems with constraints; our paper serves to
continue the research in that direction for a more sophisticated bottleneck problem. We
study a sequential process made of a finite number of steps; we optimize the cost of the
most costly step, which leaves us with a minimax problem. In connection with this, let us
consider a more substantive instance of the theoretical problem studied below.

Consider the following example of movement cost functions dependent on the list K
of pending tasks: for given megalopolises My, k € K, assume

exterior movement c(z,y, K) = p(z,y) + a(K) maxgex p(y, My),

interior jobs ¢;(7,y, K) = (p(Z, a;) + p(a;,y) + b(K) maxrer\ 53 (U, K\ {j})),

where p(-,-) is a metric (distance), and a(K) and b(K) are nonnegative functions. These
cost functions reflect the demand to construct a route such that in case of an emergency
call from some megalopolis that is not yet traversed it would be possible to arrive there as
quickly as possible after completing of the current task. Such circumstances may arise in the
operations of a repair brigade that conducts planned repairs of the objects (megalopolises)
and — in case of an emergency — rescue and reconstruction; the task that is in process
at the time of an emergency call is not forfeited because the costs associated with the
deployment of the brigade on site (viz., megalopolis) are high, yet comparable with the
losses associated with idle time of the object that has suffered an emergency.

1. General Notation and Definitions

We employ the standard set-theoretic notation (quantifiers, propositional connectives,
etc.); symbol £ denotes equality by definition. Each set, all elements of which are sets
themselves, is called a family. For every two objects a and b, denote by {a;b} the (unique)
set that contains a, b, and nothing else. In the case a = b, this yields a singleton {a} = {b}.
If u and v are objects, then (u,v) £ {{u};{u;v}} [11, p. 67] is the ordered pair (OP),
the first element of which is u and the second one is v. For an OP z, notation pry(z)
denotes its first element and pry(z) denotes its second element; these are uniquely defined
by the condition z = (pry(z), pra(z)); in case z € A x B, where A and B are sets, we have
pri(z) € Aand pra(z) € B. Asusual [12, p. 17|, for any three objects a, b, and ¢, we assume
(a,b,¢) = ((a,b),c), which yields the triple with the elements a, b, and c. For any three
sets A, B, and C, we use the traditional [12, p. 17] convention A x B x C' 2 (A x B) x C;
it obviously means that (z,y) € A x Bx C Vx € A x B Vy € C. In connection with
this, let us also recall the convention we would need later [13, p. 61|, which concerns
the notation for values of function of three variables: for sets A, B, C, and D, function
h:Ax BxC — D and elements € A x B and v € C, in accordance with the above-
mentioned representation of A x B x (| it is valid to consider the element h(u,v) € D to
be defined.

As usual, [0, 00[ 2 {£ € R|0 < ¢} (R is the real line). For each nonempty set S, denote
by R.[S] the set of all (nonnegative) functions from S to [0, co[. As usual, N = {1;2;...}.
Assume Ny = {0} UN and p,g = {i € No|(p < 9)&(i < q)} Vp € Ny Vg € Ny.

For a nonempty finite set K, let |K| € N denote the power of the set K; then, let
(bi)[K] denote the set of all bijections of the "interval" 1, |K| onto K. In particular, for a
fixed N € N, let P = (bi)[1, N| be the set of all permutations of the "interval" 1, N; for each
) € P, there exists a permutation A™! € P such that AA"1(k)) = A*(\(k)) =k Vk € 1, N.
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Denote by P(H) (P'(H)) the family of all (all nonempty) subsets of set H; let Fin(H) be
the family of all finite sets from P'(H).

2. Problem Statement

Here and below, fix a nonempty set X, a point 2 € X, which is called the base, a
natural number N, N > 2, sets M; € Fin X, ..., My € Fin X, referred to as megalopolises,
and relations

M, € P/(Ml X Ml), - ,MN S P/(MN X MN) (21)

For j € 1,N, OP z € M, describes the possible ways of conducting the interior jobs
inside the megalopolis M;: pri(z) determines the entry point and pry(z) determines the
exit point. We study the issue of organizing of a system of movements

(1’0) - (Pfl(z(l)) € Muyqy ~ prz(z(l)) € Ma(l)) -
— (pri(2?) € Myg) ~ pra(z?) € Myp)) —

(2.2)
e —
— (prl(z(N)) € Myny ~ prQ(Z(N)) € Muny),
where « is a permutation of indices from 1, N and OPs 2z ... 2(V) satisfy the conditions
AN My, - - - .2 e Mo (v)- (2.3)
In (2.2), we choose the permutation «, in our terms, the route, and a tuple (z(V, ..., (M)

that agrees with the route in the sense of (2.3); this tuple is called a track. Let us stress that
the choice of o may be restricted by precedence constraints, which would be introduced
below. Let us hereinafter assume

(0 ¢ My Vi e LIN&E(M,N M, =2 Vp e LN Vg e LN\ {p}).  (24)

Conditions (2.4) are relatively common in applications, see [13, Pt. 1,2|. In connection
with (2.1), let us make the following conventions:

M, £ {pra(2) : 2 € M} Vj € 1, N. (2.5)

In terms of megalopolises and sets (2.5), let us introduce two nonempty finite subsets of

X:
Xé{xo}u<gMi), Xé{xo}u(QMl-); (2.6)

clearly, X C X. To define precedence constraints, let us first introduce the set K &
P(1,N x 1,N) and call its elements address pairs. In an address pair h € K, the first
element pry(h) € 1, N is called a sender, and the second one pry(h) € 1, N is called a
receiver. The essence of precedence constraints is that for each pair the sender must be
visited before the receiver. The case K = @ is not excluded and corresponds to lack of
precedence constraints.

Recall that P = (bi)[1, N] is the set of all (complete) routes; it is a nonempty set of
cardinality |P| = N!. Clearly [13, Pt. 2|,

A2 {a € Pla™!(pri(h)) < o' (pra(h)) Vh € K} (2.7)
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is the set of all routes from P that are feasible in the sense of precedence. Let us assume
VK, € P(K) 3z € Ko : pri(z0) # pra(z) Vz € K. (2.8)

Assumption (2.8) implies that, in particular, pri(z) # pra(z) Vz € K. It also implies [13,
Pt. 2| that A # @ and, consequently, A € P’(IP). Clearly, A is the set of all routes « € P
such that

((Prl(z) = a(t1))&(pra(2) = a(t2))) = (t; < ty)

for an address pair z € K and "times" ¢; € 1, N and ¢, € 1, N. In addition to the route,
we also choose the track, or trajectory, which is determined in the sense (2.2) by the
OPs 2, ..., ™) supplemented with the initial OP (z°, 2°). To formally define the set of
tracks that agree with some route in the sense of (2.2), denote by Z the set of all tuples
(2i)icow : 0, N — X x X. For a € P, assume

Z, £ {(’Zi>i€0,N S Z’(ZO = (xovxo))&(zt € Ma(t) vt € 1, N)}’ (29>

evidently, Z, € Fin(Z). On the set X x X x N, where M £ P’(1, N) (we call an element
of M a task list or just a list), we consider N + 1 cost functions

CERL(XXxXxM),c; ERL(XXxXXxMN),...,exy € Re(X x X x N).

For a € P and (z;);cgw € Za, assume

Ca[(2)icow) = oS c(pra(ze), pri(zis1), {o(s) : s € L+ 1L, N})+

(2.10)
+ Ca(+1) (241, {a(s) : s €6+ 1, N})|.

We consider (2.10) a criterion of the quality for a solution (a, (2:);c5) (see (2.2)).
Since our choice of the route is restricted by precedence, let feasible solutions (FS) be
the OPs (o, (2i);cow), @ € A, (2i)iconw € Za- From the mentioned properties A # @
and Z, € Fin(Z) for « € A, we know that F'Ss form a nonempty finite set. We can now
consider the problem

Cal(zi)icon] — min, a € A, (2);cow € Za- (2.11)
To this problem, we assign its value (its extremum)

mip min_ €[(z2)con] € 0.o0] 212

and a nonempty set of optimal FS; an FS (a°, (2)),cow), @ € A, (2)icom € Zao, is
considered optimal for problem (2.11) if €qo[(2!),cow] = V-

Let us explore the idea of problem (2.11). Process (2.2) is a number of steps, and
at each of them the "system" suffers harmful effects. The latter occur both throughout
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exterior movements and interior jobs (which take place inside megalopolises). Those steps
are

xO - (Z(l) S Ma(l))7pr2(z(l)) - (Z(Q) € Ma(?))? s 7pr2(Z(N71)) - (Z(N) € Ma(N)) (213)

(obviously, (2.13) pertains to the case of N > 3). At the end of each step, all harmful effects
suffered throughout it are "reset": the system is "decontaminated". It is considered to be
important for the doses suffered at each step to not exceed the given threshold connected
with the normal operation of the "system".

The objective of movements (2.13) is to "turn off" the sources of harmful effects.
In case of movement through radiation fields it may consist of sequential dismantlement
of ionizing radiation sources (read disaster cleanup operations similar to those carried
out in Chernobyl or Fukushima). Such circumstances may arise when dismantling a
decommissioned nuclear power unit if the process is carried out by a special robot that
should first of all "survive" to complete the dismantlement of all radiation sources.

3. Extension of the Full Problem and the Dynamic
Programming Method

In this section, following [14] and (conceptually) [13, § 4.9], let us consider a natural
extension of problem (2.11), which would serve as a base for the necessary version of
dynamic programming; the constructions are intentionally abridged. For K € M, let
S[K] £ {z € K|(pri(z) € K)&(pra(z) € K)}. Based on this, define the mapping I
on N by the rule

I(K) £ K\ {pra(z) : z € S[K]} VK € M. (3.1)

Condition (2.8) directly implies that X[{t}] = @ for t € 1, N; consequently, I({t}) =

{t}. In terms of I (3.1), define the partial routes that are feasible in the sense of a crossing-
out operation connected with I. For K € N, let

(I—Dbi)[K] 4 {a € (bi)[K] |a(s) € I({a(t) s t € 5,|K|}) Vs € m} =
o e bi)[K]fa(s) € 1K\ {a(t) : t € T5=1)) Vs € m} _ (3.2)

=3 a € (b)[K]|(a(l) € I(K))&(a(s) e I(K \ {a(t) : t € T,s — 1})Vs € 2, |K]) };

we assume 1,0 = @ (for p € Ny, ¢ € Ny, and ¢ < p, we generally have p,¢ = @; see
Section 1). Using properties stated in [13, Pt. 2|, in particular, we obtain

A = (I-bi)[T, V] =

_ {@ € P|(a(l) € (T M) &(als) € (LN {a(t) : t € T5=T}) vs 2,_N)}. (3:3)

It is a special case of (3.2) that corresponds to the main, i.e., "full" problem. Returning to
(3.2), let us note (see [13], [14]) that (I — bi)[K] # @ VK € M. Thus, crossing-out feasible
partial routes do exist.
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Let us now define a partial track. For K € M, let Zy be the set of all tuples (Zi)iem :
0, |K| — X x X if, in addition, z € X and « € (bi)[K], let

Z(x,K,a) = {(Zi)ieo,K € Zk |(20 = (z,2))& (2 € My Vt € 1,] |)} € Fin(Zg). (3.4)

In view of the definitions just given, define the partial (shortened) quality criterions: if
v€X, KeMN ac (bi)[K], and (2),577] € Z(, K, @), let

@ [@ieomm] £ | max [c(pm(zt), pri (). {als) s s € T LR} )+

(3.5)
+ Ca(t+1) <Zt+1, {a(s):s € t+1,|K]| })} :

In terms of (3.5), we define partial routing problems (roughly speaking, subproblems): for
r € X and K € N, the problem is

¢ [(21)corm] — min,a € (I—bi)[K], (21,577 € Z(, K, a). (3.6)

Recall that (see, in particular, (3.4)) constraints of each and every problem (3.6) are
consistent; each problem has its value (its extremum)

o(z, K)2  min min O [(20),ca1) € [0, 00 (3.7)

a€(I-bi)[K] (zl)zeo ‘K‘EZ(Z‘ K,a)
and a nonempty set of optimal solutions. For z € X and K € N, FS

(a*,(zj)iem) a* €A, (2 )zEO\K\ € Z(x, K, a"),

is optimal in some problem (3.6) if C [( D)icoTi \Kd v(z, K).

Note that in (3.6) and (3.7) we may as well assume z = 2° and K = 1, N. For o € P
(which means « € (bi)[1, N]), by (2.9) and (3.4), we obtain the equality

Z,=2Z(2°1,N,a) (3.8)

(note that Z = Zi). Moreover, A = (I —bi)[1, N| (see [13, Pt. 2). Then, by (2.12),(3.7),
and (3.8), we have the equality
V =v(2°1,N). (3.9)

In connection with (3.9), note the obvious consequence of (2.10) and (3.5): for o € P and
(Zi)ieoW € Z,, we have €, [(Zi)iew] = Q:%[(zi)iem}, where we also take into account
(3.8). Set v(z, @) £ 0 Vz € X. Thus, we have defined the Bellman function

v:X x P(I,N) — [0, 00]. (3.10)

Theorem 1. Forxz € X and K € N, we have the equality

v(xz, K) = min min sup ({c(m,prl(z),K) + ¢ (z, K);v(prg(z),K\{j})}). (3.11)

JEI(K) zeM;
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Proof. Fix z € X and K € NM; then, n 2 |K| € 1, N and (n = 1) V (n € 2, N). These cases
are examined separately.

1) In case n = 1, we have the equality K = {t} for a certain t € 1, N; consequently,
I(K) = {t}. Further reasoning is essentially obvious (in the case of n = 1); it leads to the
conclusion that

(n=1)= (U(@K) =

(3.12)
— jgll(ilg) ?elllvﬁ sup ({c(m,prl(z), K) + ¢;(z, K);v(pra(z), K \ {j})})) :
2) Let n € 2,N. Then,n — 1€ 1,N — 1, K\ {j} € M, and
K\ {j} =n—1Vj € [(K). (3.13)
By (3.7) and (3.13), we have the following equalities:
v(pna(a), KA} = min (o) B\ h0) ] (3.14)

Vj e I(K) Vz € M.

This system of equalities is used in the two constructions that follow.
2') In view of (3.7), pick a® € (I —bi)[K] and (2));c5;5 € Z(2, K, a°) such that

2

vz, K) = € (20),c0m) - (3.15)

In connection with (3.15), note that

O{O
Q:(K )[(Z?)ieﬁ} = Sup ({c(m; prl('z?)a K) + Cao(l)(z?a K);

téllla)_il [c(prg(zf),prl(zgﬂ), {a%(s):se€t+ 1,n})+ (3.16)

+ Cao(t+1) (2?+1> {040(3) rset+ 17”})] })
It is of use to remark that (1) € I(K) and z{ € Myo(1). Then,

min min sup ({C(a:,prl(z),K) + ¢j(z, K);v(prg(z),K\{j})}) <

JEI(K) zeM;

(3.17)

< sup ({oto.pra(a) )+ con (o K olpralaf) 0} ),

where K = K \ {a°(1)}. Expression (3.14) now yields the following equality:
v(pra(2)),K) = min min ¢§§‘) [(20)icom=1]- (3.18)

a€(I-bi)[K] (zi)iGWEZ(prQ(z?)7K,a)

Note that since |K| = n, we have a® : 1,n — K (o is surjective), thus a®(t + 1) € K
for t € 1,n — 1. Moreover, since a® is injective, a®(1) # a%(t) Vt € 2,n. Then, a’(1) #
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a’(t+1) Vt € I,n—1. Finally, ag = (a®(t + 1))tEm maps 1,n — 1 onto K, i.e., ag :

1,n — 1 — K. Moreover, in view of [15, Proposition 3|,
ag € (I —Dbi)[K]. (3.19)
According to (3.4), (2{);com € Zxk and, in addition,
(20 = (z,2))&(2] € Maogy Vt € 1,n). (3.20)

Then, pry(2?) € X and hence, in view of (3.4) and (3.19) and the equality |K| =n— 1, we
have

Z(pra(2)), K, o) = {(Zi)iem € Zx | (20 = (pra(27), pra(2)))) &

(3.21)
&(z € Moy Vt € m)}
Consider a tuple (2),c57—7: 0,n — I — X x X defined in the following way:
<28 = (prﬂz?),pm(z?)))&(é? £ 20 Vte 1,71——1> (3.22)
Since |K| = n — 1, taking into account (3.21) and (3.22), we obtain
(éf)tem € Z( pra(29), K, ozo). (3.23)

From (3.18), (3.19), and (3.23), it follows that

0(pra(=0), K) < € [(20)comm] = max [e(pralZf), pra(20,), {ao(s)
te0,n—2 (324>
sET+1,n—1}) + cagesn) (3hr, {ao(s) s s €T+ 1,n — 1})]

Since {ag(s) : s et+1,n—1} ={a%s+1):set+1I,n—1}={a’(): 1l €et+2,n},
the expression in the right-hand side of (3.24) takes the form

Qt]ggo) [(ﬁ)teﬁ] — terf)li)_(z [C(prg(f,?), pri (2t0+1)> {ao(l) S m})+ (3 25)
FCab(t+2) (2?4-1’ {a’(l) -l € m})]

Expression (3.25) implies the following obvious property:

€ [(emt) = max|e(praapi),pra(efya). o'(0) s L€ T2 m)) +

+Cao(i2) (20h0, {0 s L €T+ 2,71})} = nax_ [C(prg(zg),prl(zg+1), {a®():  (3.26)

L0+ TLn}) + cangpeny (2040, {0(1) 1 1 €TF T, n})} .

From (3.24) and (3.26), we obtain the estimate

v(pra(2}), K) < max [c(prz(zg),prl(zgﬂ), {(l): 1€ b+1,n})+
fcln—1 (327)
+cao(o11) (2911, {°(1) 1 L € G +1, n})} :
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From (3.17) and (3.27), we have
mMinjey(x) Min,ep, Sup ({C(a:, pri(z), K) + ¢;(z, K); v(prg(z), K\ {j}) }) <
< sup ({c(x,prl(z?), K) + cao1)(2), K); max, e [c(prQ(z?),prl(z?H), (3.28)

{a®(l) : et +1,n}) + cavpyr) (2001, {a°() s L€t + l,n})} })
Expressions (3.16) and (3.28) yield the inequality

min min sup ({c(x, pri(z), K) + ¢j(z, K);v(pra(z), K\ {j})}) gejﬁ?o) [(2)ecom] - (3:29)

JEI(K) zeM;

From (3.15) and (3.29), we obtain the estimate

min min sup ({c(x,prl(z),K) + ¢j(z, K);v(pra(z), K \ {j})}) <vo(z, K).  (3.30)

JEL(K) 2€M;
Choose and fix an index ¢ and its OP of entry and exit points z

q € I(K), (3.31)
z € M, (3.32)

such that

sup ({ete.pri(a). K+ oo s 0 (prafa), K\ {a) } ) =

(3.33)
= jrerllglré) ;/IEII%’E sup ({c(:v, pri(z), K) + ¢j(z, K); v(prz(z), K\ {J})}>
For brevity, set
Q= K\ {q}. (3.34)

Expression (3.31) implies that, in particular, ¢ € K, whence (see (3.34)) |Q| =n—1> 1.
From (3.33) and (3.34) it follows that

sup <{c(x,pr1(z), K) + ¢y(2, K);U(prz(zm)}) _

(3.35)
- jIEIIl%Ir%) ?gvﬁ sup ({c(x, pri(z), K) + ¢;(z, K);v(pra(z), K \ {j})})
From (3.32), we now obtain
prao(z) € M, (3.36)
and, in particular, pry(z) € X; see (2.6),(3.36). Then,
(pra(z), Q) € X x MN. (3.37)
Thus, according to (3.7) and (3.37),
: - (@)
v(pra(z),)) = min min ¢ Zi)icon=1l;
(pra(=). Q) = _oin, (20);commr€ 2 (pra(2) Qua) @ (&) (3.38)
32 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming

& Computer Software (Bulletin SUSU MMCS), 2015, vol. 8, no. 1, pp. 24-45



SURVEY ARTICLES

here, in view of (3.5), we have the equalities

¢y (2i)icom=1| = max C<pr2(zt)>pr1(zt+1)a {a(s):set+1,n— 1})+
Q te0,n—2

+ Ca(t+1) (th, {a(s):set+1,n— 1})] (3.39)
Va € (I=Db)[Q]V(z)icon1 € Z(pr2(2), Q, a).
In accordance with (3.38), let us choose and fix a route 3 and a track (h;);co,—1
B e (I-h)Q], (3.40)
(hi)icom=t € Z(pr2(2), Q. ), (3.41)
such that
v(pra(2), Q) = €4 (hi)ieo1). (3.42)

where (see (3.39),(3.40),(3.41))

¢8| (hi)icor| = max_[e(pra(hn), pri(hess). {8(s) -5 € TF L= 1))+ -
reon=2 3.43

+65@+D(hﬁ4,{5(5):SGEZqTTTETTT}ﬂ.

From (3.42) and (3.43), we obtain the following equality

v(pra(2), Q) = max_[e(pra(he), pri(hus1), {8(s) i s € T Ln—1})+
t€0m—2 (3.44)

+%mﬂ0m%{M$:8€7:I%tTD]

Expressions (3.33), (3.35), and (3.44) imply that

min min sup ({c(w,prl(z), K) + ¢j(z, K);v(pra(z), K \ {j})}) =

JEI(K) zeM;

= sup ({c(m,prl(z), K) + c,(z, K); max [c(prQ(ht), pry(hes1), (3.45)

te0,n—2

{B(s):set+1,n— 1}) T Ca(t+1) (ht+17 {B(s):set+1,n— 1})] })

Note that ¢ € K and, moreover (see (3.34),(3.40)), B(j) € K Vj € 1,n — 1. In view of
that, let us introduce a mapping R
B:1,n— K, (3.46)

defined by the following conditions:
(B(1) £ q)&(B(7) £ B(j — 1)¥) € 2,n). (3.47)

Let us show that § € (bi)[K]. To this end, let us start by noticing that, since 3 maps
1,n —1 onto (), we have Vj € () 3s € g,_n 27 = B(j). In view of (3.34) and (3.47), we
obtain K C {B(l) : 1 € 1,n}, ie., K ={3(l) : | € 1,n} (we also took into account (3.46)).
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Thus, 3 is (see (3.46)) a surjection of 1,n onto K. Let us check the injectivity of (. Fix
indices j, € 1,n and j* € 1,n such that

~

B(j.) = B(). (3.48)

Let v 2 (3(4,). Then, v € K and 3(j*) = v. The two cases below are mutually exclusive:

(v=qV(reQ). (3.49)

a) Let v = ¢. Since in view of (3.37), (3.40), and (3.47) we have 3(j) € Q for j € 2,n,
)

we now see that B(Z) #£qVl €2, n. As B(]* = A( *) = ¢ in the considered case, we obtain
Jjx» = 1 =7%. We proved that

(v =q) = (J«=J"). (3.50)

b) Let v € Q. Note that in this case (B( *) € Q)& (B( *) € Q). We can therefore
conclude from (3.34) and (3.47) that j,. # 1 and j* # 1. Then, (j. € 2,n)&(j* € 2,n) and

hence (see (3.48)) 8(j. — 1) = 8(j.) = B(5*) = B(j* — 1); since S is injective (see (3.40)),
Jx = J* Thus, (v € Q) = (j.» = j*). Taking into account (3.49) and (3.50), we obtain the

equality j. = j* for all cases. Thus (see (3.48)), (ﬁ(j*) = ﬁ(j*)) (j« = j*). Since the
choice of j, and j* was arbitrary, we have proved the injectivity of B, whence, finally,

j3 € (bi)[K], (3.51)
ie., B 1s a partial route. Let us prove that it is crossing-out feasible:
3 e (I-hbi)K]. (3.52)

Indeed, let v € T, n (recall that |K| = n); consider the set T' 2 {3(t) : t € 7,m}. The
two following cases are mutually exclusive:

(y=1V(y€e2n). (3.53)

a’) Firstly, let v = 1. Then, 77m = 1,n and, by virtue of surjectivity of 3, we have
I' = {Bt) - t e 1,n} = K; hence, in view of (3.31), ¢ € I(T') and, according to (3.47),
B(1) € I(T"), where 5(1) = (). Thus, we have proved the implication

(v=1)= (B(y) € I(T)). (3.54)

b’) Now, let v € 2,n. Then, v — 1 € 1,n — 1. Therefore, we can consider the index

B =B(r-1)€Qq (3.55)
(see (3.40)). Then, according to (3.2), (3.40), and (3.55),
) eI({B@®t):tey—1,n—1}). (3.56)
Let us introduce the set
o2 {3(t) it ey —TLn—1} € PQ). (3.57)
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Show that I' = I'y. Indeed, let y, € I' and let ¢, € 7,7 be such that

Y = B(ts). (3.58)

Then, since 2 < 7, we also know that ¢, € 2,n, t, —1 € 1,n — 1, and 6( L) = Bt — 1),
i.e., y» = O(tx — 1) in view of (3.58). On the other hand, we chose t. such that t, — 1 €
v —1,n — 1, whence (see (3.57)) B(t. — 1) € I'y and, therefore, y, € I'y. Since the choice
of y, was arbitrary, we have found out that

I'cT. (3.59)
Now, let yo € I'g and let ty € ¥ — 1,n — 1 implement the equality
Yo = B(to). (3.60)
In addition, ty + 1 € 7, m and, by definition of I', we have the inclusion
B(ty+1) €. (3.61)

In addition to this, 2 < v < to + 1 and, therefore, ty + 1 € 2,n, hence (see (3.47))
B(to+1) = B(to) and, by (3.60), yo = B(to + 1); therefore, (3.61) implies that yo € I'. Since
the choice of yy was arbitrary, we have proven that I'y C I', and hence, in view of (3.59),
we obtain the desired

I =T, (3.62)

where, in accordance with (3.56) and (3.57), we have the inclusion 3(v) € I(T'y), which
means (see (3.62)) that 5( ) (F) for v € 2,n as well. Thus, we have proven the
implication (y € 2,n) = (ﬁ . In view of (3.53) and (3.54), we have the inclusion

B(v) € I(T') in all possible cases, i.e. B( ) € I({ﬁ( ) : t € ¥,m}). Since the choice of v was
arbitrary, we have proven that

Bs) e I({B(t) : t e sm}) Vs € T, (3.63)

From (3.51) and (3.63), we obtain (see (3.2)) the desired property (3.52), i.e., now 3 €
(I —bi)[K]. Note that (3.4) and (3.41) imply that (h;);c,—1 € Zg, i-e.,

(hi)icom—1:0,n —1 — X x X. (3.64)

According to (3.4) and (3.41),

(ho = (prg(z),prg(z))>&(ht € Mgy Vte 1,n — 1) (3.65)
Note that from (3.65) we have the OPs
hi_1 € Mgi_1) Vt € 2,n. (3.66)
We also have (see (3.47),(3.66)) the following property:
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Note that T,n = {1} U2,n and 0,n = {0} UT,n = {0} U {1} U2,n. In view of (3.64), we
may now consider a tuple (h:),cg7 0,7 — X x X defined by conditions

(ho 2 (,2))&(hn 2 2)& (hy & ey VE € 2,10). (3.68)

Clearly (since n = |K]), .
(ht)tGO,T € L. (3.69)

Then, (3.32) and (3.68) imply that 2, € M, whence, taking into account (3.47), we obtain

Then, (3.4) and (3.41) imply that h, € My Vt € 1,n — 1. Then, expression (3.68), yields
h € Mpg—1y Vt € 2,n. Using (3.47), we conclude that h, € My, Vt € 2.n. In view of
(3.70) and the last property, we obtain the system of inclusions

he € M) Vt € T, (3.71)
From (3.68), (3.69), and (3.71), we conclude that
(ht)seom € Zic : (ho = (x,2))& (hy € Mg, Yt € T,n). (3.72)
But in this case, (3.4) and (3.72) imply that
(he)setm € Z(2, K, D). (3.73)

In accordance with (3.52) and (3.73), we see that the OP (B, (ﬁt)te(Tn) is an FS of the
considered partial problem, therefore (see (3.7)),

v(z, K) < ¢ [(%)t@,—n] (3.74)
In view of (3.5),(3.52), and (3.73), we have

& [(n)yeos] = mas[e(pralhu). pra(hes). (B(s) < s € T L))
te0,n—1 (3.75)

+Ca141) (ﬁtﬂ, {B(s):set+ 1,n})} € [0, ool.

Consequently, from (3.68) and (3.75), we conclude that

&2 [(he)yemm] = sup ({(x pri (). {B(s) - 5 € Tn}) + ey (e, {A(s) : s € Tn)):

~

max [c(prg(ﬁt), pri(hir), {B(s) 15 € T+ L,n}) +cgpy (i, {B(s) 15 € m})}})

teln—1

In view of n = | K|, expression (3.51) yields {3(s) : s € T,n} = K. Using that, from (3.46),
(3.68), (3.74), and (3.75), we obtain the inequality

’U(I’,K) < sup ({c(m,prl(Z),K) + Cq(Z7 K);télila)—(l [C(prQ(ilt)7prl(}Alt+l)7

A S (3.76)
{B(s):set+1,n})+ Cht+1) (her, {B(s) s € T+ 1»”})] })
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Consider the transformation of the expression

max [c(prz(ﬁt), pri(huin) {B(s):s € T+ 1, n})+03(t+1) (]:Lt-l-la {B(s):s e t+ 1,n})} €10, 00l

tel,n—1

To this end, note that, according to (3.68),

c(pra(in), pri(ha), {B(s) : s € 2,n}) = c(pra(z), pri(h1), {B(s) : s € 2,n}).  (3.77)
However, (3.65) implies that pro(z) = pra(hg). Then, (3.77) yields the equality

c(pra(h1), pri(he), {B(s) : s € 2,n}) = c(pra(ho), pri(hn), {3(s) : s € 2,n}).  (3.78)
Moreover, (3.65) implies that (see (3.47)) cg (ﬁg,{ﬁ(s) s € 2,n}) = cpay(h, {B(s) :
s € 2,n}). Taking into account (3.78), we obtain

c(pra(n), pri(ha), {B(s) : s € Z,n}) + cgq) (h2, {B(s) : s € 2,n}) =
= c(pra(ho), pri(h1), {B(s) : s € 2,n}) + sy (hi, {B(s) : s € 2,n}).

This equality can be transformed into the following expression: if t € 1,n — 1, then, for
t=1,

c(pr 2(hy),pri(hegr), {B(s) s e t+1 t+1,n})+ Ch(e41) (ht+17 {B(s):set+ In}) =
= c(pra(he—1), pri(he), {8 i(s):set+1 t+1,n}) + cae (ht,{ﬂ(s) s €t+1,n}).

Choose arbitrary 7 € 2,n — 1. Then, 7 —1 € 1,n—2 and 7 + 1 € 3,n. From (3.47), we
now have, in particular,

(3.79)

Blr+1)=B(r) € K. (3.80)
Then, (3.68) implies the following representations:
(hy = hr1)&(hri1 = D). (3.81)
Thus (see (3.80),(3.81)) we obtain
c(pra(hs), pri(he 1), {B(s) s s €T+ L,n}) +¢404m) (hrs1, {[?(5) cseT+1Ln})=
= c(pra(hs—1), pri(h.), {B(s):seT+ L,n}) + o (he {B(s) : s € T+ 1,n}).
Since the choice of 7 was arbitrary, we proved that
c(prg(ﬁt),prl(ﬁt+1), {B(s):set+ 1,n}) + CB(t+1)(]A1t+1’ {B(s):set+ 1,n})

= c(pra(hi1),pri(he), {6(s) : s € T+ 1,n})+ (3.83)
+ ey (he, {B(s) :s €T+ Ln}) Yt €2,n — 1.

(3.82)

From (3.79) and (3.83), we conclude that

c(pra(he), pri(hesr), {5@ ts €+ Ln})+egpy (hi {B(s) s €T+ 1 n}) =
= c(pra(he—1),pri(he), {B(s) : s € t+1,n})+ (3.84)
tepny (he, {B(s) i s €+ Ln}) V€ T,n — L.
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Let us now consider the set {3(s) : s € t4 4+ 1,n} for t' € T,n — 1. Then, for s €
t"+ 1,n, we have s € 2,n, whence (see (3.47)) 5(s) = B(s — 1), where s — 1 € ti, n — 1.
In particular, we have s — 1 € 1,n — 1 Vs € t94 1,n. Thus (see(3.40)) we may define the
indices

B(s—1)eQVseti+1,n. (3.85)

Therefore, we have the set {3(s — 1) : s € t8 +1,n} € P'(Q); recall that ¢ +1 < n.
Returning to (3.85), note that %, n — 1 is a nonempty subset of 1,n — 1 (by the choice
of t%), thus B(I) € Q VI € t8,n — 1. Therefore, we also have the set B £ {3(l) : | €
thn—1} € P'(Q) and the set B 2 {§(]) : [ € t: + 1,n} € P'(K). In any case, B and B
are not empty. Let us prove that they are identical. Let p € B. Then, p € @ and, for a
certain I, € t4,n — 1,

p = B(L). (3.86)

Then, I, € T,n =1, I* 21,41 €2, n and, according to (3.46), 3(I*) € K; however, (3.47)
implies that 3(I*) = 3(I* — 1) = §(l.) = p. Nevertheless, I* € t* 4+ 1,n, whence 5(I*) € B.
Thus p € B, which completes the testing of the inclusion

B C B. (3.87)

Now, let p € B. Then, p € K and, for a certain l,eth+ 1,n, we have the equality

A o~

p=B(L). (3.88)

In particular, [, € 2,n, I* 21, — 1 € T,n—1 and, according to (3.47), p = B(l,) =
B(l. —1) = B(I*). However, by the choice of I, we have I* = [, — 1 € t%, n — 1, whence (see
(3.88)) p = B(I*) € B. We established the inclusion

B C B. (3.89)
In view of (3.87) and (3.89), we obtain the desired equality
B = B. (3.90)

In other words, (3.90) implies that {3(s) : s € & + Ln} = {B() : | € t*,n—1}. Since
the choice of t* was arbitrary, we have established that {3(s) :s €t + 1,n} = {B(l) : | €
t,n—1} Vt € 1,n — 1. But in this case, (3.84) implies that

c(prg(ﬁt),prl(ﬁtﬂ), {B(s):set+ In})+ Ch(e41) (ibt+17 {B(s):set+ I,n}) =
c(pra(he_1), pri(he), {B(1) : L € t,n —1}) + ey (he, {B(1) sl €t,n —1}) Ve € T,n — 1.

In view of that, we have the following equality:
 JDax_ [c(pr2(ﬁt)upr1(ibt+l)> {B(s):set+ L,n}) + Ch(e41) (ilt+1, {B(s) :

s € m})} = gg)li}fz [c(prQ(hg),prl(hgﬂ), {B):le+1,n—1})+ (3.91)

+qmﬂx@ﬂgﬂm:leg+Ln—1p]
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From (3.43) and (3.91), we have

max [c(prg(ﬂt),prl(iztﬂ), {B(s):set+ In})+ Ca(e1) (lAltH, {B(s) :set+ 1,n})} =

= ng) |:<h’i)i€0,nfl:| .

Then, (3.76) implies the estimate v(z,K) < sup ({c(m,prl(z),[() + ¢4z, K);

Gg) [(hs)icom=1] }), whence, in its own turn, we obtain, in view of (3.42), the inequality

v(z, K) < sup <{c(x, pri(z), K) + ¢c,(z, K); v(pra(z), Q)}) (3.92)

Now, taking into account (3.35), we obtain

v(z, K) < min min sup <{c(x,pr1(z),K) + ¢j(z, K);v(pra(z), K \ {]})}) (3.93)

JEI(K) zEM

From (3.30) and (3.93), we get the desired equality

v(xz, K) = min min sup ({c(x,prl(z),K) +Cj(Z,K);U(prz(z),K\{j})}>

JEL(K) zeM;
for the case of n € 2, N. In other words,
(n € 2, N) =

(U(:c, K) = min min sup ({c(m,prl(z),K) + ¢j(z, K);v(pra(z), K \ {j})}))

FEI(K) €M

In view of (3.12), we have equality (3.11) in all possible cases. -

From (3.9) and Theorem 1, it follows that

V = min min sup ({c(mo,prl(z),l,]\f)—I—Cj(z,l,N);U(pTQ(Z);l,_N\{j})}>~ (3.94)

FEI(1,N) 2€M;

4. Economical Dynamic Programming

In this section, we use the construction from [16], which stems from constructions of [13,
§4.9]; however, in [13] and [16], the criterion was additive, whence the need to adapt the
mentioned construction of [16] to the problem considered in this paper. Following [13,16],
let us introduce the family

G2 {Ke‘ﬁerK (pri(2) € K) = (pra(2) eK)}, (4.1)
elements of which (finite subsets of 1, N) are called feasible (task) lists. Assume G, =

{K €Gls= yKy} Ws € T, N. The tuple (G,),.

of G (4.1). Under this partition, Gy = {1, N} (the singleton reflecting the complete task
list) and G; = {{t} : ¢t € 1, N\ {Ki}}, where K; = {pri(z) : z € K}; thus, G; contains
singletons corresponding to "nonsenders". In addition,

7 evidently defines an (ordered) partition
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Gy = {K \{t}: K €G,.te I(K)} Vs € 2, V; (4.2)

16
Seel[n \Jlew of (4.2), we obtain the recurrence relation Gy — Gy_1 — ... — Gy, which

provides for construction of family (4.1) (recall that Gy is known). It is also known [16]
that Gs # @ Vs € I, N. If s € 1, N — 1 and K € G, then [16], in terms of the set

J(K)2{j e ,N\K|{j}UK € G.1} € P'(1,N\ K), (4.3)

construct M,[K] in the form of union of all M, j € J,(K); let us also construct a cell
D;[K] £ {(z, K) x € M,[K]} of the position space. Then, as in [16], assume

2 | DK]eP(XxG,) Vs € N -1 (4.4)

Kegs

we have defined (intermediate) layers of the position space. Let us also define the two
(nonempty) "border" layers: Dy = {(x,@) : x € M}, where M is the union of all the

sets M, 7 € 1, N\ K; and Dy = {(z°,1,N)} (the singleton that contains the position
(2°,1, N)). The tuple (D), 5 possesses the following important property (see [13, §4.9]):

(y, K\ {k}) € Ds1 Vs € 1, N VK € G, Vk € I(K) Vy € M. (4.5)
In connection with (4.5), recall that, according to (2.5), pra(2) € My Vk € 1, N Vz € M.
In addition, (4.4) implies that, for s € 1,N —1 and (z, K) € Dy, we definitely have
K € G, (by definition of cells of the space of positions); in case (z, K) € Dy, we have
K =1,N € Gy. Thus, K € G, Vs € 1,N V(x, K) € D,. Taking into account (4.5), we
consequently obtain the property

(pra(2), K\ {k}) € D;_1 Vs € I, N V(z,K) € D, Vk € I(K) V2 € M. (4.6)

Now, bearing in mind the fact that Dy € P'(XxP(1,N)), D, € P'(XxP(1,N)), ..., and
Dy € P/(XxP(1,N)) (we also have to consider 9 C P(1, N)), we define the restrictions

of the Bellman function onto the layers of the space of positions. Namely, for s € 0, N, we
assume v, € R [D,] to be a function such that v,(z, K) £ v(z, K) V(x, K) € D,. Property
(4.6) now implies that, for s € 1, N and (z,K) € Dy, we have v,_1(pra(h), K \ {k}) €
[0,00[ Vk € I(K) Vh € M; hence, we can determine the value

min min sup ({C(x,prl(z), K) +¢;(z, K);vs_1(pra(z), K\ {]})}) € [0, o0l

JEI(K) zeM;
Now, Theorem 1 implies, in view of (4.5), the following proposition:

Proposition 1. If s € 1, N, then the function vy is obtained from the function v,_q by
the rule

vs(z, K) = min min sup ({c(x,prl(z), K)4c;(z, K);vs_1(pra(2), K\{j})}) V(z, K) € D;.

JEI(K) zeM;

Note that the function vy is known: vy(z, @) = 0 Vo € 9. Therefore, Proposition 1
defines the recurrent procedure

Vg — V] — ... — UpN. (4.7)
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Implementation of (4.7) would yield (see (3.94)) the value of problem (2.11):

V= UN(xO,l,_N) =
min min sup <{ (z°,pr1(z), 1, N) + ¢;(z,1, N);on_1(pra(z), 1, N \ {]})}) (4.8)

jeI(I,N) z€M;

This value may be used to check if movements (2.2) are possible. Namely, we might be
given a tolerance threshold d of harmful effects, effective on each step of process (2.2).
Indeed, if V' < d, then, in compliance with (2.11) and (2.12), we may organize the motion
(2.2) such that

c(prg( (t)) prl( (Hl)) {a(s) :set+ 1,N})+

. - (4.9)
+cat+1( {a() s€t+1,N})<st€0,N—1.

However, in case d < V, it is not possible to provide (4.9). Thus, the implementation of
(4.7), which is completely defined by Proposition 1, already yields useful data.

Optimal solutions are also constructed based on Proposition 1. Assume z(® £ (29, z%);
this is an OP from X x X. Then, using (4.8), choose j; € I(1, N) and z) € M, such that

V =sup ({c(xo, prl(z(l)),l,_N) + ¢, (z(l), 1, );UN_l(prg( ) 1,N\ {jﬁ)}) (4.10)
(find the minimum in (4.8)). By (4.6), we have (since (2°,1, N) € Dy)

(pra(zV), 1, N\ {in}) € Dy -s; (4.11)
hence, Proposition 1 implies that

ow-1 (pra(a®), TN {jin}) =
min s sup ({e(pra(a), (), T i)+ 12)

FENTN\{j1}) 2€M;
o5 TN\ {jl});vN72(pr2<Z)71)_N\ {ﬂl,j}) })

(take into account 1, 1N \ {.]]17]}

1IN \{j} for j € I(1,N \ {j1})). Now, find
the minimum in (4. 12) find j, € I(1, N \ {3
?),1

% and z® € M, such that
UNfl(pr2( N, LN i}
sup ({ elprafat?), pra(a), TV
e (prafa®), TN finat) } ).

{i1}) + ¢ (2, 1N\ {11}); (4.13)

where (see (4.6)) the property
(pra(z@), I, N\ {ji;32}) = (pra(z?), L, N\ {jx : k € 1,2}) € Dy_» (4.14)

holds. Expressions (4.10) and (4.13) imply that, in particular,
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V = sup <{ max c(prg(z(k_l)),prl(z(k)), LN\{ji:lelk—1})+
(4.15)

+ o5, (2 N\ i L e Tk — H)}w_?(prz(z(”),l,_i\f\ {i:l¢ ﬁ})})

where we use the following obvious property: if £ = 1, then 1,k—1=1,0 = @ and,
therefore, 1, N\ {j; : { € 1,k — 1} = 1, N. Further on, we continue finding the minima
from Proposition 1 until we exhaust the task list. This will result in a feasible route
n = (Js)setw € A and track (Z(s)>seoT\f € Z, such that ¢, [(Z(S)>sem] = V. For N = 2,
the optimality of this FS already follows from (4.15).

5. A Model Problem

A model problem was considered on Euclidean space X = R x R for N = 30
megalopolises with |K| = 25 precedence constraints and 25 points in each megalopolis; each
point could serve both as an exit point and an entry point. The cost of exterior movement
was specified as Fuclidean distance in X multiplied by the coefficient a(|K|) =1+ N_T‘K';
the coefficient decreased as the power of the list of pending tasks decreased and served as a
rough estimate of harmful effect of radiation sources not yet processed. The cost of interior

jobs was the Manhattan norm ||-|| of movement from the "entry point" into the megalopolis
to the "exit point" through its center (for two plane vectors x = (21, x2),y = (y1, y2), the
Manhattan norm is ||z — y|| = |1 — y1| + |22 — y2|). Megalopolises were modeled as equal

radius disks, points were placed on the circumference with equal angular distances between
them (which, obviously, depended on the number of points in the megalopolis). Precedence
constraints in the form of address pairs are specified below: (1,10); (12,2); (2,13); (13,15);
(6,16); (15,16); (18,27); (9,27); (10,9); (11,19); (20,19); (25,26); (23,22); (21,20); (24,22);
(14,16); (7,10); (8,2); (1,9); (14,26); (2,27); (3,6); (3,19); (18,17); (14,25).

700

600

500

400

300

200

100

0

1000
Optimal route and track for the tour of 30 megalopolises. Optimal value: 376.63
The calculations were conducted on the "Uran" supercomputer (see http://

parallel.uran.ru/node/6) in 64-bit environment of Scientific Linux 6.4. Our
programming language of choice was C++11 (compiler GCC 4.4.7, optimization level -02),
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the parallelization was made with the aid of shared memory multiprocessing API OpenMP
3.0. The calculation took 1h. 46min. 34sec. on 12 cores.

Conclusion

The paper proposes an unorthodox variant of the dynamic programming method to
solve precedence-constrained routing problems with nonadditive cost aggregation (the
bottleneck cost aggregation) and dependence on the list of pending tasks. A method of
obtaining the optimal solutions is specified, and the (optimal) algorithm is implemented
in the form of a parallel computer program.

Acknowledgements. This work was partially supported by Russian Science Fund,
grant N 14-11-00109.
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MOJIEJTb «HEAJUTATUBHOM» 3AJIAYUN
MAPIIIPYTU3AIIUN C ®YHKIINSIMU CTOUMOCT,
SABUCHIINMU OT CIINCKA 3AJTAHUI

A.T. Yenuos, A.B. Canauti

Paccmarpusaercs ciemyromuil (yC/I02KHEHHBIN) BADUAHT MapPUIPYTHON 3a/1a491 <HA y3-
KI€ MeCTa»: HCCJIEIYEeTCs 3a/[a49a IOCIeI0BATEIHLHONO0 00X0a METaronCcOB, OCIOXKHEHHAS
ycaoBugAMU IIPpEAIIEeCTBOBaHUA U TEeM, 9TO (byHKL[I/II/I CTONMOCTHU (Hepel\/leHLeHI/Iﬁ U BHYTPEH-
HHUX PaboT) MOTYT SIBHBIM 00Pa30M 3aBHCETh OT CIIUCKA 33JIaHUil, KOTOPbIe HE BBIOJIHEHBI
Ha JaHHbll MOMeHT. IIporecc mepemeniennii paccMaTpuBaeTCsl B BUJIE COBOKYITHOCTU 3Ta-
IIOB, BKJIIOYAIONINX BHEIIHEE IepeMelleHne K COOTBETCTBYIOMEMY MErallOJIMCy W ITOCJeIy-
I0I[ee BBINOJIHEeHNE (BHYTPEHHHUX 110 CMBICILY) PAabOT, CBSI3aHHBIX C JAHHBIM MEAlOJIACOM.
KavecTBO COBOKYIHOIO IIpoIiecca OIEHMBAETCH MAKCHMYMOM CTOUMOCTEI COCTaBJISIONIIX
€ro JTAIOB; PACCMATPUBAETCS 33J1a9a Ha MUHUMYM YIOMSIHYTOTO KpUTepus (I0JIydaercs
3a/1a49a Ha MUHUMAKC, OOBIYHO MMeHyeMas 3ajadeil «Ha y3kue Mecras ). s mocrpoenus
OILITUMAJILHOI'O PENIeHNs B BUJIE IIAPbI MAPIIPYT-TPacca (Tpacca, Wil TPAeKTOPUs, COOTBET-
CTBYeT KOHKPDETHOMY BapHUaHTY IIPOXO0XKICHNA MEralloINCOB, HyMePYeMBbIX B COOTBETCTBHUH C
MAapIIPyTOM, OIIPEeJIeJIsIeMbIM B BHJIE IIEPECTAHOBKH MHIEKCOB) [IOCTPOEH «HECTAHIAPTHBII»
BapUaHT MeTO/la JUHAMHUYECKOT'O IPOrPAaMMHUPOBAHUSI, IPU peau3allid KOTOPOT'O He HC-
IIOJIb3YyeTCsd, B Cilydae OrpaHUYEHUIl B BUJE YCJIOBUM NpeJIecTBOBAHNUS, IIOCTPOEHNE BCETO
MaccuBa 3HadeHUi Gynrnun Bepamana.

Karouesvie cno6a: Qunamuveckoe npozpamMmuposanue; Mapuipym; Yciosus npeduie-

cmeosaHuA.
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