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We consider σ-harmonic mappings, that is mappings U whose components ui solve

a divergence structure elliptic equation div(σ∇ui) = 0, for i = 1, . . . , n. We investigate

whether, with suitably prescribed Dirichlet data, the Jacobian determinant can be bounded

away from zero. Results of this sort are required in the treatment of the so-called hybrid

inverse problems, and also in the �eld of homogenization studying bounds for the e�ective

properties of composite materials.
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Introduction

The appearance of coupled physics methods has provoked a sharp change of perspective
in inverse boundary problems. The simultaneous use of di�erent physical modalities
to interrogate, through exterior measurements, a body whose interior parameters are
unknown has enabled to single out interior functionals which carry useful, and possibly
stable, information on the parameters of interest. Such methods are also known
under the name of "hybrid inverse problems". Notable examples are the coupling of
Magnetic Resonance with Electrical Impedance Tomography [1], Ultrasound and Electrical
Impedance Tomography [2], Magnetic Resonance and Elastography [3]. To �x ideas, let
us focus on Ultrasound Modulated Electrical Impedance Tomography. In EIT the goal is
to determine the, possibly anisotropic, electrical conductivity σ = {σij} of a body Ω by
repeated boundary measurements of voltage u|∂Ω and current distribution σ∇u · ν with u
solving the elliptic PDE

div(σ∇u) = 0, in Ω. (1)

As is well known [4], the stability is very weak and, in fact, in the anisotropic case,
also non-uniqueness occurs [5]. By combining electrical measurements with ultrasound
measurements it is possibile to focus on a tiny spot near any point x ∈ Ω and it has been
shown by Ammari et al. [2] that one can detect the localized energy

H(x) = σ∇u · ∇u(x). (2)

If one repeats the experiments with di�erent boundary voltages, it is possible to extract
the functionals

Hij(x) = σ∇ui · ∇uj(x). (3)
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where u1, . . . un is an array of di�erent solutions to (1). In Monard and Bal [6, 7], it is
shown how, from such functionals, one may obtain the conductivity σ in a satisfactory
stable fashion. The crucial point, however, is to be able to set up an array of boundary
data ϕ1 . . . , ϕn and corresponding solutions u1, . . . un in such a way that the functionals
Hij are non degenerate.
In other words, calling U : Ω → Rn, the mapping U = (u1, . . . , un), which we shall
designate "σ-harmonic" mapping, it is required that the Jacobian determinant detDU
does not vanish. And, furthermore, for the purpose of stability, a quantitative lower bound
would be needed.
This is the main question that we wish to address in this note, which essentially stays
behind all coupled physics problems mentioned above, and other inverse problems as
well. The same issue showed up, for instance, in the �eld of groundwater transmissivity
detection [8].

This kind of questions also arises in the branch of the homogenization theory which
studies e�ective properties of composite materials. We give a brief outline here.

Indeed, the positivity of Jacobians of injective σ-harmonic mappings has attracted
attention in several applications. In two dimensions, the �rst application of this positivity
has been given in [9]. The long standing problem of improving the so-called Hashin �
Shtrikman bounds [10] for the e�ective conductivity of composite materials was addressed
in that paper. The method used was based on ideas of Murat and Tartar [11] and Tartar
[12], a reference not easy to �nd. We refer to [13] for a more complete treatment.
The bottom line is as follows. The question of interest, in the simplest not yet known
at that time, case is the following. Three numbers 0 < σ1 < σ2 < σ3, representing the
conductivity of three isotropic materials, called the phases, three "volume fractions" p1, p2
and p3, summing up to 1 and representing the area proportions of the phases and a 2× 2

matrix A, parametrizing the a�ne boundary data, are given. Assume that σ =
3∑

i=1

χi(x)σi

where χi represents the characteristic function of the set where σ is equal to σi times the
identity matrix and 1

|Ω|

∫
Ω

χi(x)dx = pi, i = 1, 2, 3. Then one aims to determine a bound

from below for the following quantity

F (A) = inf
χ1,χ2,χ3

inf
U0∈W 1,2

0 (Ω)

1

|Ω|

∫
Ω

Trace[(DU0(x) + A)Tσ(x)(DU0(x) + A)]dx. (4)

The overall problem is non linear and actually is linked with the notion of quasi-convexity.
More precisely, it computes the quasiconvexi�cation at the matrix A, of a non-convex
function of DU , with U − Ax ∈ W 1,2

0 (Ω). This function turns out to be the minimum
of three quadratic functions, as shown by Kohn and Strang in [14]. However, for our
purposes, it is important to note that the in�mum over U0 in (4) is attained exactly when
U(x) = U0(x)+Ax is the σ-harmonic mapping with a�ne boundary data given by U = Ax
on ∂Ω. Optimal lower bound for (4) were found by Kohn and Strang exactly exploiting the
connection with the optimal bound for e�ective conductivity found by Murat and Tartar
and, later, by Cherkaev and Lurie [15]. The optimality is restricted to the case when only
two isotropic phases are present that is, only two materials are "mixed". For three or more
phases, the methods based on compensated compactness gave suboptimal bounds. In this
speci�c context, the compensated compactness method uses simply the constraint that
the Jacobian determinant of the matrix DU is a null-lagrangian.
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The classic strategy gives the so-called "Wiener bound", that is the harmonic mean bound.
It is obtained considering the test �elds B in the class

B0 :=

B ∈ L2(Ω) :
1

|Ω|

∫
Ω

B(x)dx = A

 .

One obtains

F (A) ≥ F0(A) := inf
B∈B0

1

|Ω|

∫
Ω

Trace[B(x)Tσ(x)B(x)]dx =

= Trace

AT

 1

|Ω|

∫
Ω

σ−1(x)dx

−1

A

 . (5)

Tartar's ideas, based on compensated compactness, in this simpli�ed context lead to an
improved bound (called the "translation bound" by G.W. Milton) obtained by considering
the new test �eld in the class

B1 :=

B ∈ L2(Ω) :
1

|Ω|

∫
Ω

B(x)dx = A,
1

|Ω|

∫
Ω

detB(x)dx = detA

 .

One obtains

F (A) ≥ F1(A) := inf
B∈B1

1

|Ω|

∫
Ω

Trace[B(x)Tσ(x)B(x)]dx .

The computation is more involved than (5). This technique, however, gives an optimal
answer in two dimensions, when specialized to the case of two-phase isotropic materials.
When one deals with more than two phases this approach is no longer optimal. The results
in [16] have the following corollary. Set

B2 :=

B ∈ L2(Ω) :
1

|Ω|

∫
Ω

B(x)dx = A,
1

|Ω|

∫
Ω

detB(x)dx = detA detB ≥ 0 , a.e. in Ω

 .

One has

F (A) ≥ F2(A) := inf
B∈B2

1

|Ω|

∫
Ω

Trace[B(x)Tσ(x)B(x)]dx. (6)

In fact, in [9], it is proved that F2(A) > F1(A), as soon as one deals with more that two
isotropic phases, for suitable choices of the given parameters pi and matrices A. Later, new
optimal microgeometries were found for multiphase materials in [17] and, using again the
positivity of the Jacobian determinant, it was possible to prove their optimality according
to a stricter criterion, see [18]. The key is exactly the universal bound given on the Jacobian
determinant, which, in this context reads as the inequality detA detB ≥ 0 in (6). In
this context, it is highly desirable not to have any constraint on the regularity of the
interfaces between phases. When σ is non-symmetric, applications to composites have been
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given, for instance, in the context of the classic Hall e�ect by Briane and Milton [19, 20].
Other applications have considered the problem of determining which electric �elds are
realizable by Briane, Milton, and Treibergs [21]. On the other hand one would like to
have similar improvements in higher dimensions. Briane and Nesi [22] studied the case of
laminates of high rank showing that, for these special microgeometries the positivity of the
determinant of the "Jacobians" of the corrector matrix holds in any dimension. To explain
the result in detail would require too long a digression. However, roughly speaking, one
could expect that in higher dimensions, even for discontinuous σ one could hope for the
positivity of the Jacobian determinant if one makes assumptions on the "microgeometry".
On the other hand, even in the very restricted setting of periodic boundary conditions,
particularly adapted to composites, and even under the assumption of dealing with only
two isotropic phases, there is no hope to control the sign of the Jacobian determinant of
σ-harmonic mappings without further assumptions on the nature of the interfaces. One
explicit example was provided by Briane, Milton and Nesi [23].
We now go back to the precise subject of the present paper. We pose the following problem.
Problem 1.
Can we �nd Dirichlet data

Φ = (ϕ1, · · · , ϕn) : ∂Ω → Rn (7)

such that the corresponding solution mapping U = (u1, · · · , un) is such that detDU is
bounded away from zero independently of the conductivity σ?
Note that, in this context, it is essential that the choice of the boundary data is
independent of σ, because σ is the real unknown of the original inverse problem. As is
easily understandable, some a-priori assumptions on σ, such as ellipticity, and some kind
of regularity shall be needed.

Problem 1 has a di�erent phenomenology depending on the space dimension. When
n = 2 the issue is more or less completely understood, whereas when n = 3 or higher,
various kinds of pathologies show up. A review of such pathologies and a discussion of the
open issues when n ≥ 3 shall be the object of Section 3.
The principal aim of this note is to provide, when n = 2, a quantitative lower bound on
the Jacobian determinant under essentially minimal regularity assumptions. This is the
content of our main Theorem 2 which is the new contribution of this paper to this subject.

We start reviewing the main known results in dimension n = 2. It was proved in
Bauman et al [16] that, if σ is H�older continuous, Ω has C1,α boundary and Φ is a C1,α

di�eomorphism onto the boundary of a convex domain, then detDU > 0 everywhere.
Note that in [16], only symmetric matrices σ were explicitly considered, however, in view
of classical results on two dimensional elliptic �rst order systems with H�older coe�cients
see, for instance, [24] Appendix and also [25, Proposition 5.1], the result extends as well to
the non�symmetric case. On the other hand, the present authors [26], proved that when
σ is merely L∞ and Φ is a homeomorphism onto the boundary of a convex domain, then
detDU > 0 almost everywhere. In fact it was proved that, for every locally invertible,
sense preserving, σ-harmonic mapping U one has

log detDU ∈ BMO (8)

and, subsequently [27], this result was improved to

detDU ∈ A∞ (9)
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that is the class of Muckenhoupt weights [28].
We recall that for purely harmonic mappings, Lewy's Theorem [29], states that for
two-dimensional harmonic homeomorphisms, the Jacobian determinant cannot vanish
at interior points. Hence, when n = 2, harmonic homeomorphisms are, indeed,
di�eomorphisms. However the Jacobian determinant may vanish at boundary points.

It is also worth mentioning that the convexity assumption on the target of the boundary
mapping Φ is sharp, Choquet [30], Alessandrini and Nesi [31], if one wishes to have a
condition expressed merely on the "shape" of the target and not on its parametrization.

Conversely, note that when no regularity is assumed on σ, the essential in�mum of
detDU on compact subsets of Ω might indeed be zero. In Section 2, an example, based
on a well-known one by Meyers, is illustrated.
In the next Section 1 we shall prove a quantitative version of the result in [16]. The starting
point relies on prescribing some quantitative assumption on the boundary data Φ, when
viewed as a parametrization of the boundary of the convex target, see De�nitions 1, 2, 4.
The subsequent step consists on a quantitative lower bound of the modulus of the gradient
of a scalar solution to equation (1), Theorem 1. This estimate may be interesting on its
own. Finally we state and prove our main result, Theorem 2.

1. The Quantitative Bounds

Let ϕ : R → R be a T -periodic C1 function. Let ω : [0,∞) → [0,∞) be a continuous
strictly increasing function such that ω(0) = 0.

De�nition 1. Given m,M ∈ R, m < M , we say that ϕ is quantitatively unimodal if there
exists numbers t1 ≤ t2 < t3 ≤ t4 < t1 + T such that

ϕ(t) = m t ∈ [t1, t2] ,
ϕ(t) = M t ∈ [t3, t4] ,
ϕ′(t) ≥ min{ω(t− t2), ω(t3 − t)}, t ∈ [t2, t3] ,

−ϕ′(t) ≥ min{ω(t− t4), ω(t1 + T − t)}, t ∈ [t4, t1 + T ] .

(10)

In the sequel we will refer to the quadruple {T,m,M, ω} as to the "character of
unimodality" of ϕ.

The concept of unimodality, but not this terminology, �rst appears in Kneser [32], when
he proved Rad�o's conjecture [33] concerning the case of "purely" harmonic mappings.
The terminology "unimodality" was introduced in this context by Leonetti and Nesi [34],
following the work of Alessandrini and Magnanini [35]. A di�erent terminology (almost
two-to-one functions) has also been used for the same concept, Nachman, Tamasan and
Timonov [36].
Let Γ ⊂ R2 be a simple closed curve parametrized by a T -periodic C1 mapping

Φ : R → R2 (11)

in such a way that Φ|[0,T )
is one-to-one.

De�nition 2. We say that Γ is quantitatively convex if for every ξ ∈ R2, |ξ| = 1 the
function

ϕξ = Φ · ξ
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is quantitatively unimodal and its character of unimodality is given by {T,mξ,Mξ, ω} with
mξ,Mξ such that Mξ −mξ ≥ D, for a given D > 0.
In the sequel we will refer to the triple {T,D, ω} as to the "character of convexity" of Γ.

Remark 1. If Γ is quantitatively convex then it is convex, that is, it is the boundary
of a convex set G. In fact each tangent line to Γ turns out to be a support line for G.
The following Lemma provides a su�cient condition for quantitative convexity. Roughly
speaking, it says that if Γ is an appropriately parametrized C2 simple closed curve with
strictly positive curvature, then it is quantitatively convex in the sense of De�nition 2,
and the character of convexity can be computed in terms of the parametrization. Here,
for the sake of simplicity, we have chosen the arc�length parametrization, because the
main purpose of this Lemma is to provide a variety of examples, but we emphasize that in
general, the character of convexity does depend on the parametrization of the curve and
not only on its image.

We convene to denote by J the matrix representing the counterclockwise rotation of 90
degrees

J =

(
0 −1
1 0

)
.

Lemma 1. Let Γ be such that Φ ∈ C2 and:

i) |Φ′| = 1 ,
ii) 0 < κ ≤ Φ′′ · JTΦ′ ≤ K ,

(12)

then Γ is quantitatively convex with character {|Γ|, 1
K
, 2κ

π
t}.

Proof. Condition i) of Lemma 1, implies that Φ′(t) = eis(t), 0 ≤ t ≤ T and we may assume
that s(0) = 0.Without loss of generality we assume that Φ is orientation preserving. Then,
by condition ii) of Lemma 1, one has 0 < κ ≤ s′(t) ≤ K. Picking, w.l.o.g., ξ = e2,

ϕξ(t)− ϕξ(0) =

t∫
0

sin(s(τ))d τ .

The function s(t) ranges over the whole interval [0, 2π], picking tπ such that s(tπ) = π, we
have

Mξ −mξ =
tπ∫
0

sin(s(τ))
s′(τ)

ds(τ) ≥ 1
K

π∫
0

sin(s)ds = 1
K
,

ϕξ(t) = sin(s(t)) ,

s(t) =
t∫
0

s′(τ)dτ ≥ κ t ,

ϕξ(t) ≥ 2κ
π
t , 0 ≤ s(t) ≤ π

2
.

Thus we may pick D = 1
K
and ω(t) = 2κ

π
t , t ≥ 0 .

2
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We shall consider Ω a bounded simply connected domain in R2 with C1,α boundary.
In order to make precise the quantitative character of such regularity we introduce the
following de�nition.

De�nition 3. A domain Ω ⊂ R2 is said to be of class C1,α with constants ρ0,M0, positive
and H�older exponent α ∈ (0, 1], if for any P ∈ ∂Ω, there exist a rigid change of coordinates
such that P = 0 and we have

Ω ∩Bρ0(0) = {x ∈ Bρ0(0) : x2 > ψ(x1)}, (13)

where ψ : [−ρ0, ρ0] → R2 is a C1,α function satisfying

ψ(0) = ψ′(0) = 0 (14)

and also

||ψ||L∞([−ρ0,ρ0]) + ρ0||ψ′||L∞([−ρ0,ρ0]) + ρ1+α
0 sup

x,x′∈[−ρ0,ρ0]

x̸=x′

|ψ′(x)− ψ′(x′)|
|x− x′|α

≤M0ρ0 . (15)

De�nition 4. Given a C1,α(∂Ω;R) function ϕ, we shall say that it is quantitatively
unimodal, if considering the arclength parametrization of ∂Ω, x = x(s), 0 ≤ s ≤ T = |∂Ω|,
the periodic extension of the function [0, T ] ∋ s→ ϕ(x(s)) is quantitatively unimodal with
character {T,m,M, ω}. For such a function ϕ, we introduce the following closed arcs,
possibly collapsing to a single point:

Γmin = {x ∈ ∂Ω : ϕ = m} ,
Γmax = {x ∈ ∂Ω : ϕ =M} . (16)

Accordingly, a mapping Φ ∈ C1,α(∂Ω;R2) shall be said quantitatively convex with character
{T,D, ω} if the periodic extension of Φ(x(s)) ful�ls the conditions of De�nition 2.

Let us consider σ = {σij}i,j=1,2 a, not necessarily symmetric, matrix of coe�cients σij :
Ω → R satisfying the ellipticity condition

σ(x)ξ · ξ ≥ K−1|ξ|2 , for every ξ ∈ R2 ,
σ−1(x)ξ · ξ ≥ K−1|ξ|2 , for every ξ ∈ R2 (17)

for given positive constant K, and also

|σij(x)− σij(x
′)| ≤ E|x− x′|α , ∀x, x′ ∈ Ω , (18)

for given α, 0 < α ≤ 1 and E > 0 .
We shall consider the W 1,2(Ω) solution u to the Dirichlet problem{

div(σ∇u) = 0 in Ω ,
u = ϕ on ∂Ω .

(19)

We recall that, in view of the classical regularity theory, u in fact belongs to C1,β(Ω), for
some β ≤ α and its norm is dominated by the C1,α-norm of ϕ, modulo a constant which
only depends on ρ0,M0, K and E, with ρ0,M0 as in De�nition 3.

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2015. Ò. 8, � 3. Ñ. 25�41

31



G. Alessandrini, V. Nesi

Lemma 2. Let ϕ : ∂Ω → R be quantitatively unimodal with character {|∂Ω|,m,M, ω} and
assume that ∣∣ d

ds
ϕ(x(s))− d

ds
ϕ(x(s′))

∣∣ ≤ E|s− s′|α , ∀s, s′ ∈ [0, |∂Ω|] . (20)

Then there exist κ, δ only depending on the character of unimodality (see De�nitions 1, 4)
and on α,E, such that if

x ∈ Ω and dist(x,Γmin ∪ Γmax) ≤ δ , (21)

then
|∇u(x)| ≥ κ. (22)

Proof. Up to a C1,α di�eomorphism, with constants only depending on ρ0,M0 and |∂Ω|,
we may assume that Ω = B1(0).
It is well known that in such new coordinates u solves a new Dirichlet problem of type (19)
with a new matrix of coe�cients and new boundary data that, however, satisfy analogous
assumptions with constants and parameters only depending on the same a-priori data. For
the sake of not to overburn the notation we stick to the one of (19).
By the C1,β regularity of u, if dist(x,Γmax) ≤ η, then u(x) ≥ M − Cη with C > 0 only
depending on the a-priori data.
Let us pick η such that

M − Cη ≥ M −m

2
.

Hence, by Harnack's inequality [37],

u(x)−m ≥ C M−m
2

> 0, for every x ∈ B1−η(0) .

Here C only depends on the a-priori data. By the version of the Hopf Lemma due to Finn
and Gilbarg [38, Lemma 7], which applies to equations in divergence form, and H�older
continuous σ, we obtain

|∇u(x)| ≥ κ0 > 0 , ∀x ∈ Γmin , (23)

with κ0 only depending on the a-priori data.
By C1,β regularity we have

|∇u(x)| ≥ κ0 − Cδβ ∀x ∈ Ω such that dist(x,Γmin) ≤ δ .

Picking δ such that Cδβ ≤ κ0

2
, we obtain

|∇u(x)| ≥ κ0

2
> 0 , if dist(x,Γmin) ≤ δ . (24)

A symmetrical result applies in the neighborhood of Γmax.

2

Lemma 3. Under the same assumptions as in Lemma 2, there exists r > 0 such that

|∇u(x)| ≥ L > 0 , ∀x ∈ Ω , dist(x, ∂Ω) ≤ r . (25)
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Here L and r are positive and only depend on the a-priori data.

Proof. If we pick x ∈ ∂Ω, and write x = x(s) such that dist(x,Γmin ∪ Γmax) ≥ δ, we have

|∇u(x(s) · x′(s)| =
∣∣∣∣ ddsϕ(x(s)

∣∣∣∣ ≥ ω(δ) .

By C1,β regularity

|∇u(x)| ≥ min{κ, ω(δ)} − Crβ , ∀x ∈ Ω such that dist(x, ∂Ω) < r .

Picking r such that

Crβ =
1

2
min{κ, ω(δ)} ,

the thesis follows.

2
Theorem 1. Let Ω be a simply connected domain, C1,α-regular with constants {ρ0,M0}
(see De�nition 3). Let ϕ : ∂Ω → R be quantitatively unimodal with given character
{|∂Ω|,m,M, ω}(see De�nitions 1, 4) and let it satisfy the H�older condition (20). Let
σ = {σij(x)}i,j=1,2 satisfy the ellipticity condition (17) and the H�older bound (18). Let
u ∈ W 1,2(Ω) be the solution of the Dirichlet problem (19).
Then there exists C > 0, only depending on the a-priori data as above, such that

|∇u(x)| ≥ C > 0 , for every x ∈ Ω . (26)

Remark 2. Under stronger regularity assumptions, in particular assuming that σ is
Lipschitz continuous, a similar result was proven already in [40, Theorem 3.2].

Proof. As is well-known, there exists ũ ∈ W 1,2(Ω), called the stream function associated
to u, which satis�es

∇ũ = Jσ∇u everywhere in Ω , J =

(
0 −1
1 0

)
. (27)

Using complex notation z = x1 + ix2, f = u+ iũ, the system (27) can be rewritten as

fz̄ = µfz + νf̄z in Ω , (28)

where, the so called complex dilatations µ, ν are given by

µ = σ22−σ11−i(σ12+σ21)
1+Trσ+detσ

, ν = 1−detσ+i(σ12−σ21)
1+Trσ+detσ

, (29)

and satisfy the following ellipticity condition

|µ|+ |ν| ≤ K − 1

K + 1
, (30)

and, being σ H�older continuous, also µ and ν satisfy an analogous H�older bound.
In [16], it is proven that f is a C1,β di�eomorphism of Ω onto f(Ω). The lower bound
obtained in Lemma 3, implies that, setting

Ωr = {x ∈ Ω : dist(x, ∂Ω) > r} ,
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f : Ω\Ωr → C, is a bilipschitz homeomorphism with constants only depending on the
a-priori data. We have identi�ed C with R2 in the canonical way.
Hence f(Ω) is also a C1,β domain with constants controlled by the a-priori data. Note that
also |∂(f(Ω))| is controlled.
Let us denote g = f−1(w), w ∈ C. A straightforward calculation gives

gw = −ν(g)gw − µ(g)gw . (31)

In other words g satis�es a Beltrami equation whose coe�cients satisfy uniform ellipticity
and H�older continuity, with constants only depending on the a-priori data.
By standard interior regularity estimates, gw is bounded in f(Ωr). Using (31), we have

|gw|2 − |gw|2 ≤ C2 in f(Ωr) , (32)

which can be rewritten as

|fw|2 − |fw|2 ≥ C−2 in Ωr ,

which in turn implies
|∇u| ≥ C−1 in Ωr . (33)

Hence, in combination with Lemma 3, the thesis follows.

2
Theorem 2. Let Ω and σ be as in Theorem 1. Let Φ = (ϕ1, ϕ2) : ∂Ω → R2 be quantitatively
convex, see De�nitions 2, 4, with character {|∂Ω|, D, ω}. Let U = (u1, u2) ∈ W 1,2(Ω;R2)
solve {

div(σ∇ui) = 0 in Ω ,
ui = ϕi on ∂Ω .

(34)

There exists C > 0 only depending on the a-priori data such that

U : Ω → U(Ω) ⊂ R2

is a C1,β di�eomorphism and

detDU ≥ C2 > 0 in Ω . (35)

Remark 3. A similar result, under slightly more restrictive hypotheses, has been recently
proved by G.S. Alberti [39]. In fact the approach in [39] is based on estimates in [40, 41]
which require the Lipschitz regularity of σ. Conversely, under somewhat di�erent regularity
assumptions, quantitative upper bounds on the so-called dilatation of a σ-harmonic
mapping U , that is the quotient

Trace(DUTDU)

2 detDU
,

have been recently studied in [42, Theorems 3.1, 3.4].

Proof. In [16], it is shown that U is a orientation preserving di�eomorphism. The lower
bound (35) remains to be proven. For any ξ ∈ R2, |ξ|2 = 1, we may apply Theorem 1 to

uξ = U · ξ
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and obtain
|(DU)ξ| = |∇uξ| ≥ C > 0 in Ω . (36)

Or equivalently
|DUTDUξ · ξ| = |∇uξ|2 ≥ C2 > 0 in Ω , (37)

that is the eigenvalues λ1(x) and λ2(x) of the symmetric matrix DUT (x)DU(x) are
uniformly bounded from below:

λi(x) ≥ C2 > 0 , i = 1, 2 , ∀x ∈ Ω .

Therefore
(detDU)2 = λ1(x)λ2(x) ≥ C4 > 0 , everywhere in Ω . (38)

Since U is sense preserving, one has detDU ≥ C2 > 0 everywhere in Ω.

2
Remark 4. Theorem 2, has some feature in common with the results in [31]. In the latter
paper the authors consider harmonic mappings which are extensions of given Dirichlet
data aiming for univalent solutions. A characterization is given, for the case when U
is a di�eomorphism up to the boundary of Ω, in terms of the value of the Jacobian
determinant on the boundary, so implicitly imposing constraints on the parametrization
of the boundary of the image. One may wonder whether an assumption just on the shape
of the target may su�ce. This is not the case even in the purely harmonic case. Indeed one
may exhibit a sequence Un of sense preserving, injective, harmonic mappings of the unit
disk onto itself, �xing Un(0) = 0, such that detDUn(0) → 0 as n→ +∞. The convergence
holds uniformly on compact subsets of the unit disk. The limit harmonic mapping in not
univalent. See [43, Section 4.1].

2. Discontinuous Coe�cients. An Example

We elaborate on a well-known example by Meyers [44]. See also Leonetti and Nesi [34]
for an application in a related context. For a �xed α > 0 we consider the symmetric matrix
of coe�cients

σ(x) =


α−1x2

1+αx2
2

x2
1+x2

2

(α−1−α)x1x2

x2
1+x2

2

(α−1−α)x1x2

x2
1+x2

2

αx2
1+α−1x2

2

x2
1+x2

2

 . (39)

Is is a straightforward matter to check that its entries belong to L∞ and that σ has
eigenvalues α and α−1. Therefore σ satis�es the uniform ellipticity condition (17) with
ellipticity constant

K = max{α, α−1} ,
and σ is discontinuous at (0, 0) (and only at (0, 0), when α ̸= 1). Let us denote

u1(x) = |x|α−1x1 ,
u2(x) = |x|α−1x2 .

A direct calculation shows that ui ∈ W 1,2(B1(0)), i = 1, 2 and that they solve the Dirichlet
problem {

div(σ∇ui) = 0 in B1(0) ,
ui = xi on ∂B1(0) .
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Note also that f = u1 + iu2 is a quasiconformal mapping of B1(0) onto itself and it solves
the Beltrami equation

fz =
α− 1

α + 1

z

z
fz .

Setting U = (u1, u2), we compute

detDU = |fz|2 − |fz|2 = α|z|2(α−1) .

Therefore detDU vanishes at (0, 0) when α > 1, whereas, when α ∈ (0, 1), it diverges as
z → 0.

3. Mappings in Higher Dimensions. Examples and Open Problems

The interior lower bound on detDU obtained in Theorem 2, has been achieved by
methods which are intrinsically two-dimensional (the Beltrami equation). Only part of the
result can be extended to higher dimensions.
For instance, with minor adaptations of the method developed in the Section 1, one can
argue as follows.
Consider Ω ⊂ Rn, a bounded domain di�eomorphic to a ball of class C1,α and with
constants ρ0,M0 de�ned with the obvious slight adaptations of De�nition 3.
Let σ = {σij}i,j=1,2 be the matrix of coe�cients and let it satisfy uniform ellipticity with
constant K as in (17) and H�older continuity like in (18).
Let G ⊂ Rn be a convex body whose boundary Γ is C2 and having at each point principal
curvatures bounded from below by κ > 0.
Let Φ = (ϕ1, ϕ2, · · · , ϕn) : ∂Ω → Γ be an orientation preserving di�eomorphism such that
Φ,Φ−1 are C1,α with constant E. Let U = (u1, u2, · · · , un) ∈ W 1,2(Ω;Rn) be the weak
solution to 

div(σ∇ui) = 0 in Ω ,
ui = ϕi on Ω ,
i = 1, 2 · · · , n .

Then, by the same arguments used in Section 1, we obtain.

Theorem 3. Under the above stated assumptions, there exists ρ > 0 and Q > 0 such that
U is a di�eomorphism of Ω\Ωρ onto a neighborhood of Γ, within G and we have

detDU ≥ Q in Ω\Ωρ .

We omit the proof.
When n ≥ 3, there is no chance, under the kind of hypotheses stated above, to obtain
a global lower bound on detDU . Evidence comes from a sequence of counterexamples
that have been produced in a wide time span. A �rst illuminating example goes back
to Wood [45] and has the amazing feature of being totally explicit. Wood displayed the
following harmonic polynomial mapping from R3 onto R3:

U(x1, x2, x3) = (u1, u2, u3) = (x31 − 3x1x
2
3 + x2x3, x2 − 3x1x3, x3)

that is U is a homeomorphism, but not a di�eomorphism because detDU = 0 on the plane
{x1 = 0}.
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Later Melas [46] provided an example of a three dimensional harmonic homeomorphism
U : B1(0) → B1(0) such that detDU(0) = 0. Subsequently, Laugesen [47], showed that
there exists homeomorphisms Φ : ∂B1(0) → ∂B1(0) which are arbitrarily close to the
identity in the sup-norm such that the mapping U = (u1, u2, · · · , un) solving

∆ui = 0 in B1(0) ,
U = Φ on ∂B1(0) ,
i = 1, 2 · · · , n .

is such that detDU changes its sign somewhere inside B1(0). Such examples are especially
striking because they show that in dimension n ≥ 3 it seems di�cult to �nd a universal
rule to select Dirichlet data in such a way that the corresponding harmonic (or σ-harmonic
mapping is invertible at a topological level (because it may reverse orientation!) and not
only as a di�erentiable mapping.
One may wonder whether changing the topology of the boundary data may help. In the
periodic case, obviously the harmonic functions are linear and this might have left the hope
that, for variable coe�cients, the periodic case may be better that the generic Dirichlet
problem. However this is not the case. In [23], it was proved that, in dimension three, one
can �nd a matrix σ taking only two values, proportional to the identity matrix, and a
periodic arrangement with a smooth interface, but such that the corresponding solution
U of the cell problem also reverses the orientation. The Jacobian determinant changes its
sign in the interior of the (unit) cube of periodicity.
If, from the above examples, it seems that few chances are left of �nding a universal
criterion by which choosing Dirichlet data such that, for each σ (although smooth) the
corresponding σ-harmonic mapping U has nondegenerate Jacobian, then a more reasonable
goal would be to �nd a way to control, in term of the Dirichlet data, the set of points where
the Jacobian may degenerate and possibly evaluate the vanishing rate at such points of
degeneration.

This appears as a completely open problem, not at all easy as the following example
by Jin and Kazdan [48] shows. Let a ∈ C∞(R;R) and set

σ(x) =

 1 a(x3) 0
a(x3) 1 0
0 0 b(x3)

 , (40)

with 
a(x3) = 0 for x3 ≤ 0 ,
a(x3) ∈ (0, a0) for x3 > 0 with a0 ∈ (0, 1) ,
b(x3) =

1
1−a2(x3)

for x3 ∈ R .
We set

U(x) = (x1, x2,−x1x2 + ϕ(x3)) , (41)

where ϕ is chosen in such a way that{
(bϕ′)′ − 2a = 0 , x3 ∈ R ,
ϕ(x3) = 0 , x3 < 0 .

It turns out that ϕ′ > 0 for x3 > 0 and consequently

detDU =

{
ϕ′ > 0 , for x3 > 0 ,
ϕ′ = 0 , for x3 ≤ 0 .
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This means that the Jacobian determinant of a σ-harmonic mapping does not ful�ll the
property of unique continuation (whereas this is the case for |DU |2 = Trace(DUTDU)).
Hence the evaluation of the zero set of detDU from boundary data might be troublesome.

Remark 5. The above example has some striking features. First of all note also that,
letting a0 ↘ 0, we can make σ as close as we want to the identity matrix. Moreover U
converges, uniformly on each compact subset of R3, to the harmonic polynomial mapping
U0(x) = (x1, x2,−x1x2).

We conclude by noticing that a limiting case of the above construction yields an
example with a discontinuous, two�phase, σ which is remarkable as well.

As before we pose

σ(x) =

 1 a(x3) 0
a(x3) 1 0
0 0 b(x3)

 , (42)


a(x3) = 0 for x3 ≤ 0 ,
a(x3) = a0 for x3 > 0 with a0 ∈ (0, 1) ,
b(x3) =

1
1−a2(x3)

for x3 ∈ R .

That is σ is piecewise constant, namely

σ(x) =

 1 0 0
0 1 0
0 0 1

 when x3 < 0 and σ(x) =

 1 a0 0
a0 1 0
0 0 1

1−a20

 when x3 > 0 .

Again we pose
U(x) = (x1, x2,−x1x2 + ϕ(x3)) , (43)

where now ϕ is given by {
ϕ(x3) = a0(1− a20) x

2
3 , x3 > 0 ,

ϕ(x3) = 0 , x3 ≤ 0 .

We obtain that U is a σ-harmonic mapping with C1,1 regularity and, analogously to the
previous example, it sati�es

detDU =

{
2a0(1− a20)x3 > 0 , for x3 > 0 ,
0 , for x3 ≤ 0 .
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ÊÎËÈ×ÅÑÒÂÅÍÍÛÅ ÎÖÅÍÊÈ ßÊÎÁÈÀÍÀ
ÄËß ÃÈÁÐÈÄÍÎÉ ÎÁÐÀÒÍÎÉ ÇÀÄÀ×È

Ä. Àëåññàíäðèíè, Â. Íåçè

Ðàññìàòðèâàþòñÿ σ-ãàðìîíè÷åñêèå îòîáðàæåíèÿ, òî åñòü îòîáðàæåíèÿ U ñ êîì-

ïîíåíòàìè ui, ÿâëÿþùèìèñÿ ðåøåíèÿìè ýëëèïòè÷åñêîãî óðàâíåíèÿ div(σ∇ui) = 0,
äëÿ i = 1, . . . , n. Èññëåäóåòñÿ âîïðîñ íàõîæäåíèÿ òàêèõ óñëîâèé Äèðèõëå, ïðè êîòî-

ðûõ ßêîáèàí îòäåëåí îò íóëÿ. Ðåçóëüòàòû òàêîãî ðîäà íåîáõîäèìû ïðè ðåøåíèè òàê

íàçûâàåìûõ ãèáðèäíûõ îáðàòíûõ çàäà÷, à òàêæå â òåîðèè óñðåäíåíèÿ ãðàíèö äëÿ ýô-

ôåêòèâíûõ ñâîéñòâ êîìïîçèöèîííûõ ìàòåðèàëîâ.
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