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WEIGHTED TRUDINGER — MOSER INEQUALITIES
AND APPLICATIONS
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Trudinger — Moser inequalities provide continuous embeddings in the borderline cases
of the standard Sobolev embeddings, in which the embeddings into Lebesgue L? spaces
break down. One is led to consider their natural generalization, which are embeddings into
Orlicz spaces with corresponding maximal growth functions which are of exponential type.
Some parameters come up in the description of these growth functions. The parameter
ranges for which embeddings exist increase by the use of weights in the Sobolev norm, and
one is led to consider weighted TM inequalities. Some interesting cases are presented for
special weights in dimension two, with applications to mean field equations of Liouville
type.

Keywords: Trudinger — Moser inequalities; Orlicz spaces; maximal growth functions;
weighted TM inequalities.

To the memory of Alfredo Lorenzi,
with affection, admiration and gratitude.

Qual & ’l geometra che tutto s’affige

per misurar lo cerchio, e non ritrova,
pensando, quel principio ond’ elli indige,
tal era io a quella vista nova:

veder voleva come si convenne

I’imago al cerchio e come vi s’indova

Dante Alighieri, Par. XXXIII 133-138

1. Introduction

1.1. Why Trudinger — Moser Inequalities?

For  C RY a bounded domain, the classical Sobolev embeddings are

pN
N—p_p'

WyP(Q) — LYQ) if p<N and 1<¢<

The Trudinger — Moser inequalities concern the borderline cases

p= N, for which formally 1 < ¢ < p* = o0,

which leads to the question whether

WyP(Q) C L=(Q).

The answer is no, as simple examples show. The natural question then is to find the
maximal growth function ¢ : R — R* such that

if u € W, (Q), then / ¢(u)dz is finite.
Q
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The answer was given by Yudovich [1], Peetre |2|, Pohozaev |3| and Trudinger [4]: from
their works one knows that VVO1 N(Q) embeds into the Orlicz space Ly, with growth function
N

(so-called N -function) ¢(t) = ™" —1. This embedding is known by the name Trudinger
inequality.

The proof is based on an expansion in power series of the exponential function, and
on a control of the L” norm of each term of the series. This growth is optimal in the
sense that for any higher growth there exist functions u € W, (Q) for which the integral
[ ¢(u)dz becomes infinite. Trudinger’s inequality was made more precise by J. Moser [5],
Q

who showed that the supremum on the unit ball in Wy ()

N
N-1
sup /eo‘lul dx

Vu|Ndz<1
iz

is bounded if and only if « < ay = Nwﬁ, where wy_1 is the N — 1-dimensional surface
of the unit sphere. The integral is actually finite for any positive «, but if @ > ay it can
be made arbitrarily large by a suitable choice of w.

From now on we will consider the two dimensional case. Let us recall Moser’s result
(known as the Trudinger — Moser inequality) in this case

Theorem 1. (Moser 1970 [5]). Let N = 2; then

2 C|Q ) <4
sup /6M§{ Q] if a<dr 0

[ IVul2dz<1 J + 00 Zf a > 4.
Q

With a modification of the same arguments Moser also proved a corresponding
inequality on the sphere S? which is useful for application in conformal deformation theory
on manifolds.

Theorem 2. [5] If u is a smooth function defined on the 2 dimensional sphere S* such

that
[ vk, [up=o
S2

S2

there exists a constant C such that

/ e gy < C. (@)

SQ

These inequalities are very useful to study 2-dimensional problems, such as the problem
of prescribed Gauss curvature and mean field equation. In these contexts there is a more
handy form.

1.2. Logarithmic Trudinger — Moser Inequalities

A variant of the TM inequality is the following logarithmic TM inequality:
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Theorem 3. Let Q) C R? be a bounded domain. Then there exists a constant C' > 0 such
that

1
log/e“ drx < F/’VUF dr+C, u€ Hy(Q), (3)
T
0 0

while for the 2-dimensional unit sphere S* we have

1
§/|Vu|2 dx—87rlog/e“ de > —C, ue HY(S?), /u:O. (4)
52 52 52
Proof. Using
2
a 272
ab < 12 +e°b (5)

applied to b = G, a = |Vul]z and €2 = 47, one has

2
_u 4~ || V|3
/e“ dr < /evm'w”mx < /e g Tor1Vellz <

Q Q Q

1 1

< e IVulE gup / A gy < Gt IVl (6)
IVulla<1

Q

in virtue of the Trudinger — Moser inequality. Passing to the logarithm one obtains

1
U < 2
log/e dr < —167T||Vu||2 +logC (7)
QO

so that (3) is proved.

O
The logarithmic TM inequality is crucial in the study of mean field equations of
Liouville type (see [6]) of the form
—Au =\ ., in QCR?
J e
o (8)

u =10 on Of).

Equation (8) has been derived by Caglioti, Lions, Marchioro and Pulvirenti |7,8] from the
mean field limit of point vortices of the Euler flow, see also Chanillo — Kiessling [9] and
Kiessling [10]. Equation (8) occurs also in the study of multiple condensate solutions for
the Chern — Simons — Higgs theory, see Tarantello [11,12].

In particular, it has been shown (see e.g. [13,14]) that equation (8) has a solution
which is a global minimizer of the associated energy functional if

A < 8. 9)

Here we concentrate our attention on some extensions of the previous results.
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1.3. Weighted Trudinger — Moser Inequalities

In some recent papers the influence of weights for such kind of inequalities has been
studied.

In [15,16] the authors consider the effect of power weights on the maximal growth in
the integral term. In [17-19] the interest is devoted to the impact of weights in the Sobolev
norm.

More precisely, let w € L'(Q) be a non-negative function, and consider the weighted
Sobolev space

Hy(Q,w) = cl{u € C(Q) ; /|Vu|2w(x)dx < oo} (10)
Q

For a general embedding theory for weighted Sobolev spaces, see Kufner [20].

It turns out that for weighted Sobolev spaces of form (10) logarithmic weights have a
particular significance. However, as we will see below (Remark 2), we will need to restrict
attention to radial functions to obtain interesting results. We are therefore led to consider
problems of the following type: let B C RY denote the unit ball in RY, and consider the
weighted Sobolev space of radial functions

H i Bow) = e € GGzl B) i Julfy = [ [VuPu(a)de < oo
Q

where
1 e

w(z) = <log —)B or  w(x)= <log —)6 , 8>0. (11)

|z] ]
B
Theorem 4. (Calanchi — Ruf, [17]) Let 5 € [0,1) and wy(x) = (log |71\> or wy(z) =
B
<10g W) . Then

. 2
(a) /e'“' dz < 400, forall u€ Hy,,q(B,w) < 7 <7:= T3
B
and
(b) sup /ealwdﬂc < 400
HunSLradB

iof and only if
a<a,=2[2r(1- 5)]ﬁ =2[20(2/)""*  (critical growth).

Remark 1. This result extends the Trudinger — Moser inequality; indeed, for S = 0 we
recover the classical TM inequality.

The proof is quite technical and we refer the reader to [17] for details. The idea is to
transform the problem (which is one-dimensional by the radial symmetry) to an integral
inequality on the half-line. In fact, by introducing the variable ¢ by || = e7*/? and rescaling

we obtain
«

2[2m(1 — B) =7
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Then
9] .2t6 ] . 00 -
/’VU|2\108§|3¢H6 dr = / fb_ﬂ dt and W/eo‘“ dr = /e‘w “tdt.
B 0 B 0

For the necessity of the conditions in (b) it is sufficient to test

/eawt dt
0
on the following Moser type functions
b
— 0<t<k
m(t) =9 k7
1-8
k=2 t>k
which satisfy |||, = 1. If v = ﬁ, then
/ed"zt dt > /eakt dt = e % 5 00 if @> 1.
0 k

For the subcritical and critical cases, we need an estimate for functions ¢) which satisfy

)2 = [ ‘f%t; dt < 1. In fact, by a radial lemma, see [17]), for such ¢ it holds that

0
()] < 7.
With this estimate the subcritical case can be trivially proved. If v < ﬁ and a < 1,

one easily obtains
oo oo

/eo‘w_t dt < /eo‘t_t dt < oo.

0 0
As concerns the critical exponent (that is, the most delicate case) v = ﬁ
we follow an idea of Leckband [21], proving that the set of sublevels of the functions in

the integral behaves well, and it is controlled by an integrable function on [0, +00).

and a =1,

Going to the limiting case § = 1 in Theorem 4, one has that the exponent v of u
in the integral goes to infinity, that is we are again in a borderline case. But again, the
embedding does not go into L°°, but we find a critical growth of double exponential type,
as described in the following

Theorem 5. [17] Let wy(x) = |log (ﬁﬂ (i.e. 5 =1). Then,

(a) /eelu dr < +oo , YV u€ Hy,,q(B,w),

B
while
a e27‘ru2 <
(b) sup e dr < +00 <= a < 2.
lullw, <1,rad
B
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Next, we consider the case 8 > 1. In this case the functions in Hj,,,(B,w;) are
bounded:

Theorem 6. [17]| Let f > 1. Then we have the following embedding

Hy yoq(B,w1) < L¥(B).

rad

Also in these cases the idea is to reduce the problem to a one-dimensional integral
inequality.

We conclude this first part with the following remark which explains why we have to
restrict to radial functions.

Remark 2. If we do not restrict to radial function, that is, if we consider the whole
weighted space H}(B,w), and the problem to find a, 3,7 so that for u € H}(B,w),

,
sup / e dr < o

lJuflw <1
B

then we note that for v = 2 and o > 47 the supremum is not finite. Indeed, translating
Moser’s functions to a region in which the presence of the weight is not substantial (see [17])
one concludes that the presence of the weight has no effect for increasing the range of the
inequality.

1.4. Liouville Type Equations with Logarithmic Coefficients

In this article we will derive some new logarithmic Sobolev inequalities with weights,
and will then apply them to prove existence results for associated mean field equations of
Liouville type, with elliptic operators with logarithmic coefficients. In particular, we will
prove

B
Theorem 7. Let w = w(zx) = <log |—€|) be a logarithmic weight, with 8 > 0. Then, for
x

any X > 0, the equation

(&

4 f@) i B
Je (12

u = 0 on 0B

—div(w(z)Vu) = A

has a (weak) radial solution w € H}(B,w) which is a global minimizer of the associaled
energy functional.

We recall that for the corresponding equation with S = 0 there exists a global
minimizer solution only for A in the range

A < 8. (13)

This is due to the fact that for 3 > 0 the growth e" is not the maximal possible. If we
increase the growth to critical growth e/*” then we find an analogous restriction to (13)
to obtain a global minimizer for the associated equation:
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Theorem 8. Let w(z) = (log ﬁ)ﬁ Then, with 0 = 2L, the equation

ﬁ:
divlwyve) = AT ey g
—dliviw(xr u = —_— xr n
e (11
u = 0 on 0B

has a weak radial solution, which is a global minimizer of the associated energy functional,
for every \ satisfying

+v

2 247
/\<?(2+7)V. (15)

Note that for 6 = 1, i.e. v = 2, the condition (15) reduces to A < 8, which is the
condition (9) of the mean field Liouville equation.

Finally, we prove an existence theorem for the following elliptic mean field equation
with a double exponential growth

Theorem 9. Let w = log ‘;e' Then the equation

e e
—div(log & Vu) = N\—— — + f(z in B
(o8 57 V) log [ e H) (16)
B B
u = 0 on 0B
has a global radial minimizer solution for every
A<, (17)

2. Weighted Logarithmic TM Inequalities

In this section we prove some logarithmic TM inequalities with weights. We start with
a simple inequality based on the previous weighted TM embeddings, and apply it to prove
Theorem 7.

B
Proposition 1. Let w(z) = (log ﬁ) with 8 > 0. Then for every A > 0 there exists a
constant C = C(\, B) which depends on A and B such that

1 L1
el = Mog [ ev = JJull - € (19
B

where

Jully = [ 19uPuts) da.
B
Proof. Let 5 € (0,1). Reasoning as in Remark 1, using again inequality (5), we have

108;/6“ <log /e4i2(|uu|w)2+€2u1% dz | <
B B
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1 lul
< 52”“”30 + log /e4i2(|u|w)2 dr

B
Now we choose &2 = There exists a constant C; = C1(, ) which depends only on ¢
(hence on A) and v = =5 > 2, such that
/646 (p‘jﬁ‘w)Q dr < /66’1—i-cw(|uu|w)'Y dr :
B B

here a, is the critical exponent given in Theorem 4. By (b) of the same theorem we have
that

o8 /eé?('uu'“’)g dz | < log/ecﬁav(hfﬁw)” dx
B B

Ju| ol
< Ci(7, )\)+10g/ea”(llul )

B

de < C.

With a similar argument (using Theorem 5 and Theorem 6) one can prove the result in
the case § > 1.

O
3. Applications to Liouville Type Equations
Consider the following elliptic boundary value problem
—div(w(z)Vu) = )\fe +f inB
eu
B (19)

u= 0 on 0B

B
where w = w(z) = (log P ’) is a logarithmic weight with 8 > 0, and f € L*(B).

We look for weak solutions of (LP), i.e. a function u € Hy,,,(B,w) satisfying

[ e"v da
/VUVU w(zr)dr = ABferx + /fv dz, Vv e Cg.q(B),
B B

i.e. u is a weak solution if and only if it is a critical point of the functional J :
H! (B,w)— R associated to equation (19) and given by

o,rad
1 2 u
J(u) = §Hu|] — Aog [ e'dz — | fudz.
B B
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Proposition 2. For every A > 0 problem (19) has a weak radial solution which
corresponds to the minimum of the functional J(u).

Proof. We first prove that J is coercive for every A fixed. Indeed by Proposition 1, one has

1
J(u) > Zllulli, = € = Dlullu|If1-

for a suitable constant D. Then J is bounded from below.
Let
m = inf J(u)

ueH

and let {u,}, be a minimizing sequence, i.e.
J(un) = m, as n — +o0.

By the coercivity of J, w, is bounded in H&} (B,w). Therefore there exists u €

Hj .qa(B,w), such that (up to a subsequence)

rad

Uy = u in Hy,pq(B,w) , u, —»u in L'(B), u, —u ac. , as n— +0oo.

Observe that the nonlinearity e" is subcritical and that there exists a constant C such
that
|tet] < Cre ™ (20)

From Theorem 4 and this estimate we have that

e e L' and /|e“" un‘dm < (C.
B

We now apply the following result due to de Figueiredo — Miyagaki — Ruf [22, lemma 2.1].

Lemma 1. Let (u,), be a sequence of functions in L'(Q) converging to u in L'(Q).
Assume that F(u,(x)) and F(u(z)) are also L' functions. If

/ | Fun(2)) tn()| < ©
Q

then F(u,(z)) converges to F(u(z)) in L .
We then obtain, for F(t) = ¢!
/e“"—)/e“, as n — 4oo ,
B B

and by lower semi-continuity of the norm || - [|2,

m < J(u) < liminf J(u,) =m .

n—-+0o0o

So that u is a global minimum (and then a critical point) of J.

This completes also the proof of Theorem 7.
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4. A Critical Weighted TM Inequality

Let w(x) = (10g z |> the logarithmic weight with 5 € (0, 1).
Consider the functional Jy : H,,q(B,w) — R defined as follows

1
Ja(u) = §Hu|]fu — Alog /e|“|6 dr | — /fudav (21)

where [[u]l?, = [ [Vu(z)[*w(x) dz, § = 7% (7 is the critical growth given by (b), Theorem
B
4), and f € L*(B).

+

27
Proposition 3. J) is coercive for all A < —(2 +7) 7
v

We need a preliminary inequality
Lemma 2. Let 0, 0’ two conjugate exponents. For every s, t > 0 one has

& é
st < (O‘;) + ;—, Yo > 0. (22)

Proof. This is a classical convexity inequality, which can be deduced by Jensen’s inequality.
Here we give an alternative proof. In fact, considering

1
sup{st — —s"}
s>0 p

we get, by setting the derivative equal zero in the maximum point, ¢t = s, hence s(t) =
t1/(=1D " and then

sup{st — 57} — /=0y _ L/
p p

5>0
=(1- 1)75 p/(p=1) — ltq.
p q
To obtain other constants in the inequality, it is sufficient to consider
1 (as)?  #°
—1) < —, VYa>0.
)< @y T va
(I
Proof. (of Proposition 3) We first prove that
|2 oy (L5 )y
log/euedx < ‘—w + log e ullw’ dx |,
A(7)
B B
4
where A(y) = 7T(2 + 7) * and a, = 2[2m(2/~)]"? is the critical exponent given in

Theorem 4 (notice that A(2) = 167 and ay = 47 gives the classical TM inequality for the
Liouville problem).
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We use inequality (22), where 9, " are conjugate exponents, such that

00 =~ . 0=
{ a8 — o that is { 5 — 2t

v

One has, by taking s = ||u/|%, and ¢ = (14-)? in (22),

[[t[loo
|ul Jull
[ul” < an (=) + T8
Mulle”  A®)
and the first inequality is proven.
Let
C= sup /ea“’(lllfw)W dx .
||u||w§1,uEH
B
Then

1
J(u) = 5”“”?21) — Alog /e”6 dx | — /fudx
B

B

1 A
> (= 2 2 _\ogC — D
> (5= 507 1l = AlogC = DIl

and the proof is complete.

Let us now consider the following Liouville-type equation

|u|9—2u e|u|9
f e|“|9
B

u = 0 on 0B

—div(w(z)Vu) = A +f inB

(23)

Again by the coercivity of the functional J, one can prove the following existence

result

247

2 24y
Proposition 4. For every A < —2(2 +v) 7 the functional Jy attains its minimum, and

therefore problem (23) possesses a weak radial solution.

The proof is very similar to that of Theorem 7. This completes the proof of Theorem 8.

5. A Double Exponential Weighted
Liouville Type Problem

Consider the functional I : H}(B,w) — R defined as follows

1 u
I\(u) := §Hu||120g — Aloglog /ee dx (24)
B
where [Jullf, = [ [Vu(z)|? <10g ﬁ) dz. We have the following log log-inequality:
B
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Proposition 5. [t holds

ou 1 1 IOgCMB
log log /e de | < %Hquog + log <§ + Yu € Hy(B,w)
B e 2«

Therefore the functional Iy is coercive for every A < m and it has an absolute minimum.

Proof. Taking a = |||y, b = % and €2 = 7 in
a’ 272
ab < 12 +e°b (25)
we have

2
|u|<i||u||2+w( u )
< gl t )
so that

. el e () iz, ()
log log /ee dr | < log log/e6 dr = loglog/ee " N dx
B B B

Let
7T’U.2
Cyp = sup / 2™ g

Jlullw<1,rad
1

(which is finite in virtue of Theorem 5).

W N2
Now taking a = e /llo, p = e () and €2 = 2 in the inequality above, one gets

el le%|‘“||72ﬂ+262ﬂ—(\\u|\w .
log log e dr | <loglog | e? dr =

B B

(), 1
= log log/e26 el dw+§eﬁ”““i <

B

< log (]og Cus + %ei”u”%ﬂ) < %HUH?U + log (% + 10%5{2}3) .

e 2w

1 )\ ) 1 logCup
In(u) > (5 - %) [ully, — Alog (g T T ) '

For A < 7 the functional (and every perturbation with a linear term) is coercive,
therefore it is bounded from below. In order to prove the existence of a minimum it is
sufficient to argue as in Theorem 2.

Moreover

O
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Finally we point out that any minimizer of I, satisfies the following elliptic problem

with a double exponential growth.

u

u €

€ €

—div( log ﬁ Vu)

” -+ f inB
loggee [pee (26)

u =0 on 0B

and hence the proof of Theorem 9 is complete.
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B3BEIITAHHBIE HEPABEHCTBA TPYJIWUHI'EPA - MO3EPA
N ITPNJIO2KEHN A

M. Kaaanxu, 6. Pygp

Hepapenctsa Tpynurrepa — Mo3sepa obecrnednBaioT HEIIPEPLIBHBIE BIAOKEHN B TIOTPa-
HUYHBIX CIy4asix CTaHAapTHBIX Biaoxkenusit CoGoseBa, B KOTOPBIX BIOXKEHHST B TPOCTPAH-
crBax Jlebera LP orcyrcrByior. B aTOM caydae MpuXOAUTCS PACCMATPUBATH UX €CTECTBEH-
Hble 00O0DINEHNST, KOTOPBIE SIBJIAIOTCS BJIOKEHUSIMHU B MPOCTpaHCcTBa OpJinda COOTBETCTBY-
OmMUX (QYHKIUAM MaKCHMAJIbHOTO POCTA, IKCIOHEHIMATBLHOTO THIa. 1lpu omucanum 3Tux
GbyHKIMIE POCTa BO3HUKAIOT HEKOTOPHIE MapaMeTphl. /lnana3oHbl mapaMerpos, /st KOTOPBIX
CYIIECTBYIOT BJIOXKEHWsI, MOXKHO YBEJIUYIUTD C TIOMOIIBIO BBeieHus BecoB B HopMax Cobodte-
Ba, YTO M IPHUBOINAT K PACCMOTPEHNIO BeCOBBIX HepaseHcTB TM. IlpencTaBieHbl HEKOTOPbIE
WHTEPECHBIE CJIYYanW CO CIENUaJbHBIMUA BECAMU B JBYMEPHOM 00JIAaCTH, C MPUJIOKEHUEM K
YPaABHEHUSM CDPEIHEro MOJisi TUMa, JIuyBuis.

Karoweswie caosa: nepasencmea Tpydunzepa — Mosepa; npocmpancmea Opauta; max-

cumanvrole PyHKYUY pocma; eecosovie nepasencmea TM.
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