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Trudinger � Moser inequalities provide continuous embeddings in the borderline cases

of the standard Sobolev embeddings, in which the embeddings into Lebesgue Lp spaces

break down. One is led to consider their natural generalization, which are embeddings into

Orlicz spaces with corresponding maximal growth functions which are of exponential type.

Some parameters come up in the description of these growth functions. The parameter

ranges for which embeddings exist increase by the use of weights in the Sobolev norm, and

one is led to consider weighted TM inequalities. Some interesting cases are presented for

special weights in dimension two, with applications to mean �eld equations of Liouville

type.
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1. Introduction

1.1. Why Trudinger � Moser Inequalities?

For Ω ⊂ RN a bounded domain, the classical Sobolev embeddings are

W 1,p
0 (Ω) ↪→ Lq(Ω) if p < N and 1 ≤ q ≤ pN

N − p
= p∗.

The Trudinger � Moser inequalities concern the borderline cases

p = N, for which formally 1 ≤ q ≤ p∗ = ∞,

which leads to the question whether

W 1,p
0 (Ω) ⊂ L∞(Ω).

The answer is no, as simple examples show. The natural question then is to �nd the
maximal growth function ϕ : R → R+ such that

if u ∈ W 1,N
0 (Ω), then

∫
Ω

ϕ(u)dx is finite.
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The answer was given by Yudovich [1], Peetre [2], Pohozaev [3] and Trudinger [4]: from
their works one knows thatW 1,N

0 (Ω) embeds into the Orlicz space Lϕ, with growth function

(so-called N -function) ϕ(t) = e|t|
N

N−1 −1. This embedding is known by the name Trudinger
inequality.

The proof is based on an expansion in power series of the exponential function, and
on a control of the Lp norm of each term of the series. This growth is optimal in the
sense that for any higher growth there exist functions u ∈ W 1,N

0 (Ω) for which the integral∫
Ω

ϕ(u)dx becomes in�nite. Trudinger's inequality was made more precise by J. Moser [5],

who showed that the supremum on the unit ball in W 1,N
0 (Ω)

sup∫
Ω

|∇u|Ndx≤1

∫
Ω

eα|u|
N

N−1
dx

is bounded if and only if α ≤ αN = Nω
1

N−1 , where ωN−1 is the N − 1-dimensional surface
of the unit sphere. The integral is actually �nite for any positive α, but if α > αN it can
be made arbitrarily large by a suitable choice of u.

From now on we will consider the two dimensional case. Let us recall Moser's result
(known as the Trudinger � Moser inequality) in this case

Theorem 1. (Moser 1970 [5]). Let N = 2; then

sup∫
Ω

|∇u|2dx≤1

∫
Ω

eαu
2 ≤

{
C|Ω| if α ≤ 4π

+∞ if α > 4π.
(1)

With a modi�cation of the same arguments Moser also proved a corresponding
inequality on the sphere S2 which is useful for application in conformal deformation theory
on manifolds.

Theorem 2. [5] If u is a smooth function de�ned on the 2 dimensional sphere S2 such
that ∫

S2

|∇u|2dµ ≤ 1,

∫
S2

udµ = 0,

there exists a constant C such that ∫
S2

e4πu
2

dµ ≤ C. (2)

These inequalities are very useful to study 2-dimensional problems, such as the problem
of prescribed Gauss curvature and mean �eld equation. In these contexts there is a more
handy form.

1.2. Logarithmic Trudinger � Moser Inequalities

A variant of the TM inequality is the following logarithmic TM inequality:

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2015. Ò. 8, � 3. Ñ. 42�55
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Theorem 3. Let Ω ⊂ R2 be a bounded domain. Then there exists a constant C > 0 such
that

log

∫
Ω

eu dx ≤ 1

16π

∫
Ω

|∇u|2 dx+ C , u ∈ H1
0 (Ω), (3)

while for the 2-dimensional unit sphere S2 we have

1

2

∫
S2

|∇u|2 dx− 8π log

∫
S2

eu dx ≥ −C, u ∈ H1(S2),

∫
S2

u = 0. (4)

Proof. Using

ab ≤ a2

4ε2
+ ε2b2 (5)

applied to b = u
∥∇u∥2 , a = ∥∇u∥2 and ε2 = 4π, one has∫

Ω

eu dx ≤
∫
Ω

e
u

∥∇u∥2
∥∇u∥2dx ≤

∫
Ω

e
4π u2

∥∇u∥22
+ 1

16π
∥∇u∥22

dx ≤

≤ e
1

16π
∥∇u∥22 sup

∥∇u∥2≤1

∫
Ω

e4πu
2

dx ≤ Ce
1

16π
∥∇u∥22 (6)

in virtue of the Trudinger � Moser inequality. Passing to the logarithm one obtains

log

∫
Ω

eudx ≤ 1

16π
∥∇u∥22 + logC (7)

so that (3) is proved.

2

The logarithmic TM inequality is crucial in the study of mean �eld equations of
Liouville type (see [6]) of the form

−∆u = λ
eu∫

Ω

eu
, in Ω ⊂ R2

u = 0 on ∂Ω.

(8)

Equation (8) has been derived by Caglioti, Lions, Marchioro and Pulvirenti [7,8] from the
mean �eld limit of point vortices of the Euler �ow, see also Chanillo � Kiessling [9] and
Kiessling [10]. Equation (8) occurs also in the study of multiple condensate solutions for
the Chern � Simons � Higgs theory, see Tarantello [11,12].

In particular, it has been shown (see e.g. [13, 14]) that equation (8) has a solution
which is a global minimizer of the associated energy functional if

λ < 8π. (9)

Here we concentrate our attention on some extensions of the previous results.
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1.3. Weighted Trudinger � Moser Inequalities

In some recent papers the in�uence of weights for such kind of inequalities has been
studied.

In [15, 16] the authors consider the e�ect of power weights on the maximal growth in
the integral term. In [17�19] the interest is devoted to the impact of weights in the Sobolev
norm.

More precisely, let w ∈ L1(Ω) be a non-negative function, and consider the weighted
Sobolev space

H1
0 (Ω, w) = cl

{
u ∈ C∞

0 (Ω) ;

∫
Ω

|∇u|2w(x)dx <∞
}
. (10)

For a general embedding theory for weighted Sobolev spaces, see Kufner [20].

It turns out that for weighted Sobolev spaces of form (10) logarithmic weights have a
particular signi�cance. However, as we will see below (Remark 2), we will need to restrict
attention to radial functions to obtain interesting results. We are therefore led to consider
problems of the following type: let B ⊂ RN denote the unit ball in RN , and consider the
weighted Sobolev space of radial functions

H1
0,rad(B,w) = cl

{
u ∈ C∞

0,rad(B) ; ∥u∥2w :=

∫
Ω

|∇u|2w(x)dx <∞
}

where

w(x) =
(
log

1

|x|

)β
or w(x) =

(
log

e

|x|

)β
, β ≥ 0. (11)

Theorem 4. (Calanchi � Ruf, [17]) Let β ∈ [0, 1) and w0(x) =
(
log 1

|x|

)β
or w1(x) =(

log e
|x|

)β
. Then

(a)

∫
B

e|u|
γ

dx < +∞, for all u ∈ H1
0,rad(B,w) ⇐⇒ γ ≤ γ :=

2

1− β

and

(b) sup
∥u∥w≤1,rad

∫
B

eα|u|
γ

dx < +∞

if and only if

α ≤ αγ = 2 [2π(1− β)]
1

1−β = 2 [2π(2/γ)]γ/2 (critical growth).

Remark 1. This result extends the Trudinger � Moser inequality; indeed, for β = 0 we
recover the classical TM inequality.

The proof is quite technical and we refer the reader to [17] for details. The idea is to
transform the problem (which is one-dimensional by the radial symmetry) to an integral
inequality on the half-line. In fact, by introducing the variable t by |x| = e−t/2 and rescaling
we obtain

ψ(t) = 2
1−β
2 [2π(1− β)]1/2 u(x) , ᾱ =

α

2 [2π(1− β)]
1

1−β

.

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
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Then ∫
B

|∇u|2| log |x∥β dx =

∞∫
0

ψ̇2tβ

1− β
dt and

1

m(B)

∫
B

eαu
γ

dx =

∞∫
0

eᾱψ
γ−t dt.

For the necessity of the conditions in (b) it is su�cient to test

∞∫
0

eᾱψ
γ−t dt

on the following Moser type functions

ηk(t) =


t1−β

k
1−β
2

0 ≤ t ≤ k

k
1−β
2 t ≥ k

which satisfy ∥ηk∥w = 1. If γ = 2
1−β , then

∞∫
0

eᾱη
γ
k−t dt ≥

∞∫
k

eᾱk−t dt = eᾱk−k → ∞ if ᾱ > 1.

For the subcritical and critical cases, we need an estimate for functions ψ which satisfy

∥ψ∥2w =
∞∫
0

ψ̇2tβ

1−β dt ≤ 1. In fact, by a radial lemma, see [17]), for such ψ it holds that

|ψ(t)| ≤ t1/γ.
With this estimate the subcritical case can be trivially proved. If γ ≤ 2

1−β and ᾱ < 1,
one easily obtains

∞∫
0

eᾱψ
γ−t dt ≤

∞∫
0

eᾱt−t dt <∞.

As concerns the critical exponent (that is, the most delicate case) γ = 2
1−β and ᾱ = 1,

we follow an idea of Leckband [21], proving that the set of sublevels of the functions in
the integral behaves well, and it is controlled by an integrable function on [0,+∞).

Going to the limiting case β = 1 in Theorem 4, one has that the exponent γ of u
in the integral goes to in�nity, that is we are again in a borderline case. But again, the
embedding does not go into L∞, but we �nd a critical growth of double exponential type,
as described in the following

Theorem 5. [17] Let w1(x) = | log
(
e
|x|

)
| (i.e. β = 1). Then,

(a)

∫
B

ee
|u|2

dx < +∞ , ∀ u ∈ H1
0,rad(B,w1),

while

(b) sup
∥u∥w1≤1,rad

∫
B

ea e
2πu2

dx < +∞ ⇐⇒ a ≤ 2.
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Next, we consider the case β > 1. In this case the functions in H1
0,rad(B,w1) are

bounded:

Theorem 6. [17] Let β > 1. Then we have the following embedding

H1
0,rad(B,w1) ↪→ L∞(B).

Also in these cases the idea is to reduce the problem to a one-dimensional integral
inequality.

We conclude this �rst part with the following remark which explains why we have to
restrict to radial functions.

Remark 2. If we do not restrict to radial function, that is, if we consider the whole
weighted space H1

0 (B,w), and the problem to �nd α, β, γ so that for u ∈ H1
0 (B,w),

sup
∥u∥w≤1

∫
B

eα|u|
γ

dx <∞ ,

then we note that for γ = 2 and α > 4π the supremum is not �nite. Indeed, translating
Moser's functions to a region in which the presence of the weight is not substantial (see [17])
one concludes that the presence of the weight has no e�ect for increasing the range of the
inequality.

1.4. Liouville Type Equations with Logarithmic Coe�cients

In this article we will derive some new logarithmic Sobolev inequalities with weights,
and will then apply them to prove existence results for associated mean �eld equations of
Liouville type, with elliptic operators with logarithmic coe�cients. In particular, we will
prove

Theorem 7. Let w = w(x) =

(
log

e

|x|

)β
be a logarithmic weight, with β > 0. Then, for

any λ > 0, the equation
−div

(
w(x)∇u

)
= λ

eu∫
B

eu
+ f(x) in B

u = 0 on ∂B

(12)

has a (weak) radial solution u ∈ H1
0 (B,w) which is a global minimizer of the associated

energy functional.

We recall that for the corresponding equation with β = 0 there exists a global
minimizer solution only for λ in the range

λ < 8π. (13)

This is due to the fact that for β > 0 the growth eu is not the maximal possible. If we
increase the growth to critical growth e|u|

γ
, then we �nd an analogous restriction to (13)

to obtain a global minimizer for the associated equation:

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
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Theorem 8. Let w(x) = (log e
|x|)

β. Then, with θ = 2γ
2+γ

, the equation −div
(
w(x)∇u

)
= λ

|u|θ−2u e|u|
θ∫

B

e|u|θ
+ f(x) in B

u = 0 on ∂B

(14)

has a weak radial solution, which is a global minimizer of the associated energy functional,
for every λ satisfying

λ <
2π

γ2
(2 + γ)

2+γ
γ . (15)

Note that for θ = 1, i.e. γ = 2, the condition (15) reduces to λ < 8π, which is the
condition (9) of the mean �eld Liouville equation.

Finally, we prove an existence theorem for the following elliptic mean �eld equation
with a double exponential growth

Theorem 9. Let w = log e
|x| . Then the equation

−div
(
log e

|x| ∇u
)

= λ
eu

log
∫
B

eeu
ee

u∫
B

eeu
+ f(x) in B

u = 0 on ∂B

(16)

has a global radial minimizer solution for every

λ < π . (17)

2. Weighted Logarithmic TM Inequalities

In this section we prove some logarithmic TM inequalities with weights. We start with
a simple inequality based on the previous weighted TM embeddings, and apply it to prove
Theorem 7.

Proposition 1. Let w(x) =
(
log e

|x|

)β
with β > 0. Then for every λ > 0 there exists a

constant C = C(λ, β) which depends on λ and β such that

1

2
∥u∥2w − λ log

∫
B

eu ≥ 1

4
∥u∥2w − C (18)

where

∥u∥2w =

∫
B

|∇u|2w(x) dx.

Proof. Let β ∈ (0, 1). Reasoning as in Remark 1, using again inequality (5), we have

log

∫
B

eu ≤ log

∫
B

e
1

4ε2
(

|u|
∥u∥w

)2+ε2∥u∥2w dx

 ≤
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≤ ε2∥u∥2w + log

∫
B

e
1

4ε2
(

|u|
∥u∥w

)2 dx


Now we choose ε2 = 1

4λ
. There exists a constant C1 = C1(γ, λ) which depends only on ε

(hence on λ) and γ = 2
1−β > 2, such that∫

B

e
1

4ε2
(

|u|
∥u∥w

)2 dx ≤
∫
B

eC1+αγ(
|u|

∥u∥w
)γ dx ;

here αγ is the critical exponent given in Theorem 4. By (b) of the same theorem we have
that

log

∫
B

e
1

4ε2
(

|u|
∥u∥w

)2 dx

 ≤ log

∫
B

eC1+αγ(
|u|

∥u∥w
)γ dx

≤ C1(γ, λ) + log

∫
B

eαγ(
|u|

∥u∥w
)γ dx ≤ C.

With a similar argument (using Theorem 5 and Theorem 6) one can prove the result in
the case β ≥ 1.

2

3. Applications to Liouville Type Equations

Consider the following elliptic boundary value problem
−div

(
w(x)∇u

)
= λ

eu∫
B

eu
+ f in B

u = 0 on ∂B

(19)

where w = w(x) =

(
log

e

|x|

)β
is a logarithmic weight with β > 0 , and f ∈ L2(B).

We look for weak solutions of (LP), i.e. a function u ∈ H1
0,rad(B,w) satisfying

∫
B

∇u∇v w(x)dx = λ

∫
B

euv dx∫
B

eudx
+

∫
B

fv dx, ∀v ∈ C∞
0,rad(B) ,

i.e. u is a weak solution if and only if it is a critical point of the functional J :
H1
o,rad(B,w) → R associated to equation (19) and given by

J(u) =
1

2
∥u∥2 − λ log

∫
B

eudx−
∫
B

fu dx.

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
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Proposition 2. For every λ > 0 problem (19) has a weak radial solution which
corresponds to the minimum of the functional J(u).

Proof. We �rst prove that J is coercive for every λ �xed. Indeed by Proposition 1, one has

J(u) ≥ 1

4
∥u∥2w − C −D∥u∥w∥f∥2

for a suitable constant D. Then J is bounded from below.
Let

m = inf
u∈H̃

J(u)

and let {un}n be a minimizing sequence, i.e.

J(un) → m, as n→ +∞.

By the coercivity of J , un is bounded in H1
0,rad(B,w). Therefore there exists u ∈

H1
0,rad(B,w), such that (up to a subsequence)

un ⇀ u in H1
0,rad(B,w) , un → u in L1(B) , un → u a.e. , as n→ +∞.

Observe that the nonlinearity eu is subcritical and that there exists a constant C1 such
that

|tet| ≤ C1e
αγ |t|γ . (20)

From Theorem 4 and this estimate we have that

eun ∈ L1 and

∫
B

∣∣eun un∣∣dx ≤ C.

We now apply the following result due to de Figueiredo � Miyagaki � Ruf [22, lemma 2.1].

Lemma 1. Let (un)n be a sequence of functions in L1(Ω) converging to u in L1(Ω).
Assume that F (un(x)) and F (u(x)) are also L1 functions. If∫

Ω

∣∣F (un(x))un(x)∣∣ ≤ C

then F (un(x)) converges to F (u(x)) in L1.

We then obtain, for F (t) = et∫
B

eun →
∫
B

eu , as n→ +∞ ,

and by lower semi-continuity of the norm ∥ · ∥2w
m ≤ J(u) ≤ lim inf

n→+∞
J(un) = m .

So that u is a global minimum (and then a critical point) of J .

2
This completes also the proof of Theorem 7.
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4. A Critical Weighted TM Inequality

Let w(x) =
(
log

1

|x|

)β
the logarithmic weight with β ∈ (0, 1).

Consider the functional Jλ : H
1
0,rad(B,w) → R de�ned as follows

Jλ(u) :=
1

2
∥u∥2w − λ log

∫
B

e|u|
θ

dx

−
∫
B

fudx (21)

where ∥u∥2w =
∫
B

|∇u(x)|2w(x) dx, θ = 2γ
2+γ

(γ is the critical growth given by (b), Theorem

4), and f ∈ L2(B).

Proposition 3. Jλ is coercive for all λ <
2π

γ2
(2 + γ)

2+γ
γ .

We need a preliminary inequality

Lemma 2. Let δ, δ′ two conjugate exponents. For every s, t ≥ 0 one has

st ≤ (αs)δ
′

δ′
+

tδ

δαδ
, ∀α > 0. (22)

Proof. This is a classical convexity inequality, which can be deduced by Jensen's inequality.
Here we give an alternative proof. In fact, considering

sup
s≥0

{st− 1

p
sp}

we get, by setting the derivative equal zero in the maximum point, t = sp−1, hence s(t) =
t1/(p−1), and then

sup
s≥0

{st− 1

p
sp} = t1/(p−1)t− 1

p
tp/(p−1)

= (1− 1

p
)t tp/(p−1) =

1

q
tq.

To obtain other constants in the inequality, it is su�cient to consider

(αs)(
1

α
t) ≤ (αs)δ

′

δ′
+

tδ

δαδ
, ∀α > 0.

2

Proof. (of Proposition 3) We �rst prove that

log

∫
B

e|u|
θ

dx ≤ ∥u∥2w
A(γ)

+ log

∫
B

eαγ(
|u|

∥u∥w
)γ dx

 ,

where A(γ) =
4π

γ2
(2 + γ)

2+γ
γ and αγ = 2 [2π(2/γ)]γ/2 is the critical exponent given in

Theorem 4 (notice that A(2) = 16π and α2 = 4π gives the classical TM inequality for the
Liouville problem).
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We use inequality (22), where δ, δ′ are conjugate exponents, such that{
θδ = γ

θδ′ = 2
that is

{
δ = 2+γ

2

δ′ = 2+γ
γ

One has, by taking s = ∥u∥θw and t = ( |u|
∥u∥w )

θ in (22),

|u|θ ≤ αγ(
|u|

∥u∥w
)γ +

∥u∥2w
A(γ)

and the �rst inequality is proven.
Let

C = sup
∥u∥w≤1,u∈H̃

∫
B

eαγ(
|u|

∥u∥w
)γ dx .

Then

Jλ(u) :=
1

2
∥u∥2w − λ log

∫
B

e|u|
θ

dx

−
∫
B

fudx

≥
(
1

2
− λ

A(γ)

)
∥u∥2w − λ logC −D∥f∥2∥u∥w

and the proof is complete.

2
Let us now consider the following Liouville-type equation −div

(
w(x)∇u

)
= λ

|u|θ−2u e|u|
θ∫

B

e|u|θ
+ f in B

u = 0 on ∂B

(23)

Again by the coercivity of the functional Jλ one can prove the following existence
result

Proposition 4. For every λ <
2π

γ2
(2 + γ)

2+γ
γ the functional Jλ attains its minimum, and

therefore problem (23) possesses a weak radial solution.

The proof is very similar to that of Theorem 7. This completes the proof of Theorem 8.

5. A Double Exponential Weighted

Liouville Type Problem

Consider the functional I : H1
0 (B,w) → R de�ned as follows

Iλ(u) :=
1

2
∥u∥2log − λ log log

∫
B

ee
u

dx

 (24)

where ∥u∥2log =
∫
B

|∇u(x)|2
(
log e

|x|

)
dx. We have the following log log-inequality:
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Proposition 5. It holds

log log

∫
B

ee
u

dx

 ≤ 1

2π
∥u∥2log + log

(
1

8
+

logCMB

e
∥u∥2

log
2π

)
∀u ∈ H1

0 (B,w)

Therefore the functional Iλ is coercive for every λ < π and it has an absolute minimum.

Proof.Taking a = ∥u∥w, b = |u|
∥u∥w and ε2 = π in

ab ≤ a2

4ε2
+ ε2b2 (25)

we have

|u| ≤ 1

4π
∥u∥2w + π

(
u

∥u∥w

)2

,

so that

log log

∫
B

ee
u

dx

 ≤ log log

∫
B

ee
1
8π ∥u∥2w+2π( u

∥u∥w )
2

dx = log log

∫
B

ee
1
4π ∥u∥2w e

π( u
∥u∥w )

2

dx

Let

CMB = sup
∥u∥w≤1,rad

∫
B1(0)

e2e
2π|u|2

dx

(which is �nite in virtue of Theorem 5).

Now taking a = e
1
4π

∥u∥2w , b = eπ(
u

∥u∥w )
2

and ε2 = 2 in the inequality above, one gets

log log

∫
B

ee
u

dx

 ≤ log log

∫
B

e
1
8
e

1
2π ∥u∥2w+2e

2π( u
∥u∥w )

2

dx =

= log

log

∫
B

e2e
2π( u

∥u∥w )
2

dx+
1

8
e

1
2π

∥u∥2w

 ≤

≤ log
(
logCMB + 1

8
e

1
2π

∥u∥2w
)
≤ 1

2π
∥u∥2w + log

(
1
8
+ logCMB

e
∥u∥2w
2π

)
.

Moreover

Iλ(u) ≥
(
1

2
− λ

2π

)
∥u∥2w − λ log

(
1

8
+

logCMB

e
∥u∥2w
2π

)
.

For λ < π the functional (and every perturbation with a linear term) is coercive,
therefore it is bounded from below. In order to prove the existence of a minimum it is
su�cient to argue as in Theorem 2.

2
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Finally we point out that any minimizer of Iλ satis�es the following elliptic problem
with a double exponential growth.

−div
(
log e

|x| ∇u
)

= λ
eu

log
∫
B

eeu
ee

u∫
B
eeu

+ f in B

u = 0 on ∂B

(26)

and hence the proof of Theorem 9 is complete.
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ÂÇÂÅØÀÍÍÛÅ ÍÅÐÀÂÅÍÑÒÂÀ ÒÐÓÄÈÍÃÅÐÀ � ÌÎÇÅÐÀ

È ÏÐÈËÎÆÅÍÈß

Ì. Êàëàíêè, Á. Ðóô

Íåðàâåíñòâà Òðóäèíãåðà � Ìîçåðà îáåñïå÷èâàþò íåïðåðûâíûå âëîæåíèÿ â ïîãðà-

íè÷íûõ ñëó÷àÿõ ñòàíäàðòíûõ âëîæåíèÿé Ñîáîëåâà, â êîòîðûõ âëîæåíèÿ â ïðîñòðàí-

ñòâàõ Ëåáåãà Lp îòñóòñòâóþò. Â ýòîì ñëó÷àå ïðèõîäèòñÿ ðàññìàòðèâàòü èõ åñòåñòâåí-

íûå îáîáùåíèÿ, êîòîðûå ÿâëÿþòñÿ âëîæåíèÿìè â ïðîñòðàíñòâà Îðëè÷à ñîîòâåòñòâó-

þùèõ ôóíêöèÿì ìàêñèìàëüíîãî ðîñòà, ýêñïîíåíöèàëüíîãî òèïà. Ïðè îïèñàíèè ýòèõ

ôóíêöèé ðîñòà âîçíèêàþò íåêîòîðûå ïàðàìåòðû. Äèàïàçîíû ïàðàìåòðîâ, äëÿ êîòîðûõ

ñóùåñòâóþò âëîæåíèÿ, ìîæíî óâåëè÷èòü ñ ïîìîùüþ ââåäåíèÿ âåñîâ â íîðìàõ Ñîáîëå-

âà, ÷òî è ïðèâîäèò ê ðàññìîòðåíèþ âåñîâûõ íåðàâåíñòâ TM. Ïðåäñòàâëåíû íåêîòîðûå

èíòåðåñíûå ñëó÷àè ñî ñïåöèàëüíûìè âåñàìè â äâóìåðíîé îáëàñòè, ñ ïðèëîæåíèåì ê

óðàâíåíèÿì ñðåäíåãî ïîëÿ òèïà Ëèóâèëëÿ.

Êëþ÷åâûå ñëîâà: íåðàâåíñòâà Òðóäèíãåðà � Ìîçåðà; ïðîñòðàíñòâà Îðëè÷à; ìàê-

ñèìàëüíûå ôóíêöèè ðîñòà; âåñîâûå íåðàâåíñòâà TM.
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