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Interest in Sobolev type equations has recently increased significantly, moreover, there
arose a necessity for their consideration in quasi-Banach spaces. The need is dictated not
so much by the desire to fill up the theory but by the aspiration to comprehend non-
classical models of mathematical physics in quasi-Banach spaces. Notice that the Sobolev
type equations are called evolutionary if solutions exist only on R;.

The theory of holomorphic degenerate semigroups of operators constructed earlier in
Banach spaces and Frechet spaces is transferred to quasi-Sobolev spaces of sequences.
This article contains results about existence of the exponential dichotomies of solutions
to evolution Sobolev type equation in quasi-Sobolev spaces. To obtain this result we proved
the relatively spectral theorem and the existence of invariant spaces of solutions.

The article besides the introduction and references contains two paragraphs. In the
first one, quasi-Banach spaces, quasi-Sobolev spaces and polynomials of Laplace quasi-
operator are defined. Moreover the conditions for existence of degenerate holomorphic
operator semigroups in quasi-Banach spaces of sequences are obtained. In other words,
we prove the first part of the generalization of the Solomyak — Iosida theorem to quasi-
Banach spaces of sequences. In the second paragraph the phase space of the homogeneous
equation is constructed. Here we show the existence of invariant spaces of equation and get
the conditions for exponential dichotomies of solutions.

Keywords: holomorphic degenerate semigroups; quasi-Banach spaces; quasi-Sobolev

spaces; invariant space; exponential dichotomy of solution.

Introduction. Let 4 be a Banach space, L(4l) be a space of linear and bounded operators.
Mapping U € C(R; L()) is called a semigroup of operators if for all s,t € R,

UsUt=U*H, (1)

Usually a semigroup is identified with its graph {U*: ¢t € R, }. A semigroup {U": t €
R, } is called holomorphic if it can be analitically continued to some sector of complex
plane containing half axis R, preserving property (1). A holomorphic semigroup is called

degenerate if its unit P=s— tlir& U' is a projector in 4.
H

Firstly holomorphic degenerate semigroups appeared in [1, 2] as solving semigroups
for evolution Sobolev type equation

Lu=Mu, (2)

where operator L € L(;F), and operator M € Cl(4;F), § is a Banach space. Explicit
theory of such semigroups can be found in [3].

Interest in Sobolev type equations has recently increased significantly [4-6], moreover,
there arose a necessity for their consideration in quasi-Banach spaces. The need is dictated
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not so much by the desire to fill up the theory but by the aspiration to comprehend non-
classical models of mathematical physics [7] in quasi-Banach spaces [8].

Since the Cauchy problem for the Sobolev type equation is not solvable for arbitrary
initial data it is necessary to construct the phase space of equation as the set of admissible
initial values containing all solutions of equation [3|. The phase spaces of evolution and
dynamical Sobolev type equations were constructed earlier in Banach spaces [3]. Moreover
there were found conditions when the phase space splits into direct sum of invariant with
respect to equation spaces and the solutions have exponential dichotomies [9]. By now these
problems are completely solved in Banach spaces [6]. Our goal is to spread these ideas to
one class of evolution Sobolev type equations in quasi-Banach spaces of sequences.

1. Holomorphic Degenerate Semigroups of Operators. Let 4 be a lineal over R. An
ordered pair (L [|.]]) is called a quasi-normed space, if the function g ||.|| :4l — R satisfies
the following conditions:

1. y|jul| > 0 for all u € 4, moreover y ||u|| = 0 iff u = 0, where 0 is a zero element in ;
2. yllou||=|aly |lul for all v € U, a € R;

3. ullu+ ]| =C( |lul| +y« v ) for all u,v € U, where the constant C' > 1.

The function g ||u|| with properties (i)—(iii) is called a quasi-norm. Obviously, in case
C =1 this function is a norm.

The metrizable complete quasi-normed space is called a quasi-Banach space. The
spaces of sequences ¢, g € (0,1) are well known quasi-Banach spaces (for ¢ € [1,+00)
the spaces {, are Banach spaces).

Let henceforth {\;} C R, be a monotone sequence such that klim A = +o0. The

—00
quasi-Banach space

b= {u:{uk}: i ()\,?]uk\>q< + oo}

m q\ 1/q
with a quasi-norm }* [Ju|| :<ZZ°:1 <)\,f \uﬂ) > , m € Ris called a quasi-Sobolev space.

Obviously, for ¢ € [1,+00) the spaces (7' are Banach spaces; 62:&1, and there is a
dense and continuous embedding £} into (i for n > m and ¢ € R.

Example 1. Let 4 = E;”””, § = €' Qu()) be a polynomial of power n. Consider
operator Qn(A)u={Q,(\,)ur}, n € N, where {u,} € U. It is easy to see that operator
Qn(A) € L(8LF), moreover Qn(A) £ — (7" is a toplinear isomorphism.

Let & and § be quasi-Banach spaces, operators L € L(;F) and M € CI(LLF),
following [1], [2], take into consideration L-resolvent set p"(M) ={u € C: (uL—M)"" €
L(F; 0} and L-spectrum ol(M) =C\p“(M) of operator M. It is easy to show that the
set pl(M) is always opened, therefore the L-spectrum of operator M is always closed.

Definition 1. Operator M is called strongly (L, p)-sectorial, p € {0} UN, if
(i) there exist constants a € R and 6 € (7/2;7) such that the sector

Sko(M) ={p € C: |arg(u—a)| <0, p>a} C p"(M);
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(ii) there exists a constant K € R, such that
K

maxx {cw [[ B (D] 2@ |1 DI} < g

for all ju,pi1,-. . pp € SEy(M). Here R(L%p)(]\/[) =II_o R (M) is the right
and L{L’p)(l\/[) =1L (M) is the left (L,p)-resolvent of operator M, and
RL(M) = (uL—M)"'L and Li(M) =L(uL—M)"" are the right and the left L-resolvents
of operator M respectively.

(iii) there exists a dense in § lineal §° such that

const

AT Ll

where const = const(f); for all A, up, € SF(M), k=0,...,p

(iv)

5 |MOL = M)T'L{, (M) f|| < for all f € F°,

const
Ml < [N TTozg Ll

for arbitrary A,y € SF(M), k=0,...,p and some const € R,.

Example 2. Let U= =" m € R, g € Ry, Q, (A) = g ciX' Ry (N) =320 d;V
be polynomials of powers n and s respectively (n < s) with real coefficients (f < 0),
without common roots. Construct operators L = @Q,(A), M = R (A) as in example L.
It is easy to show that R,(A) € CI(4;F), domRy(A) = €72, the L-spectrum o”(M) of
operator M consists of points ux = Rs(Ax)(Qn(Ae))™, k& € N: \; is not the root of the
polynomial Q,, (\).

£ ||[(AL— M)

Lemma 1. [10] Operator M defined in example 2 is strongly (L,0)-sectorial.

Theorem 1. [10| Let operators M and L be defined as in example 2. Then
(i) operators L and M generate holomorphic semigroups {U' : t € R, } and {F" :t €
R} on spaces U and § respectively given by

1
211

1
L M ut Ft_
Ry (M)e"dp € L (L) 57

r r

Ul=— LE(M)e'dp € L(3) (3)

for t € Ry, where the contour T’ C p“(M) is such that |argu| — 0 npu p — oo, p € L.
(11) there exist semigroup’s units which are the projectors P € L(U) and Q) € L(F)
given by

I— > < .eg>e, ifthereexist ¢ € N: )\ is the root of Q,(N),

{ I, if A is not the root of @, () for all k € N;
P pu—
keNTk=¢

(the projector Q has the same form), splitting the quasi-Banach spaces 3 and § into direct
sums
U=tou', F=3'o3"
(iii) there is splitting of operator actions Ly € L(U*;T*), M, € Cl(U*;F*), k= 0,1,
and existence of operators My "' € L(F0U°), LTt € L(FHUb);
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(i) operators H=My ' Ly (G=LoMy ") are nilpotent and operators S=L; " M;: domMnN
U = U and T=M, L7 :M[domM] N F' — ' are sectorial.

2. Invariant Spaces and Exponential Dichotomies of Solutions. Let 4 and § be
quasi-Sobolev spaces of sequences, operators L € L(4;§) and M € Cl(4; F) be constructed
in example 2. Consider linear evolution Sobolev type equation

Lu=Mu. (4)

Vector-function u € C'(R;4l), satisfying (4) pointwise is called (a classical solution
of this equation. The solution u = u(t) of (4) is called a solution to the weakened Cauchy
problem (in sense of S.G. Krein), if in addition for uy € U

lim wu(t) = . (5)

t—0+

holds.

Definition 2. The set P C U is called a phase space of equation (4), if
(i) any solution u = u(t) of (4) lies in P pointwise, i.e. u(t) € P for all t € Ry;
(ii) for all up € P there exists a unique solution to (4), (5).

Theorem 2. [10]| Let operators M and L be defined as in example (2). Then the subspace
U is a phase space of (4).

Consider the following condition:

Let ol(M)=ocl(M)Uok(M) and of(M) is not empty,
there exists a bounded domain ; C C with a boundary of class C"*, (6)
such that € D oL(M) and Q; (oL (M) is empty.

If this condition holds then there exist [11] operators given by integrals

1 1
Pi= 5 [ REODaand @ = o= [ LHand
m ga!

2w ),
where v, = 0. By construction operators P; € L({) and @, € L(F).

Lemma 2. Let L,M € L(;F) be defined in example 2 and condition (6) hold then
operators Py € L(U) and Q1 € L(F) are projectors in corresponding spaces.

Put 4 = im Py, % = im Qy, 4% = ker P, F' = ker Qq; and by Ly; (Mi;) denote
restriction of operator L (M) onto U

Theorem 3. Let conditions of lemma 2 be fulfilled. Then
(i) operators Liy, My, € LU FH);
(i) there exists an operator L] € L(F';UM).

Proof. Statement (i) follows from the construction of operators P; € L() and @1 € L(F),
since LP1 = QlL = L11 and MP1 = QlM = M11~
Statement (ii) follows from theorem 1 since operator L} is equal to restriction of
1
operator -— /(,uL — M)~ *du onto subspace F'!.

i 0
Y1
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Corollary 1. Let conditions of lemma 2 be fulfilled. Then P, = PP, = PiP and Q1 =
Q1 = Q1.

Construct operators P, = P— P; and ()2 = Q — Q1. Due to corollary 1 these operators
are projectors. Put U2 = im P, §'? = imQq and by Lo (Mj3) denote restriction of
operator L (M) onto $A2.

Corollary 2. Let conditions of lemma 2 be fulfilled. Then
(Z)u:uo @u17 8280@317 ulzull @um? 812311@512;
(ii) operators Ly, My € L($2; F1?);
(iii) there exists an operator Ly € L(F'?;U'?).

Definition 3. Let B be a phase space of (4). The subset J C B is called an invariant
space of equation (4), if for arbitrary uo € J the solution u = u(t) of (4), (5) lies in J
pointwise (i.e. u(t) € J for all t € R,).

Theorem 4. Let operators L, M € L(I;F) be defined as in example 2 and condition (6)
hold then the image of group

1
Vi=_— [ RI(M)e"dpu,t € R, (7)

27 ),
is an invariant space of (4).

Proof. The statement follows from equality im V* = im P, = U4*, that follows from theorem
2, corollaries 1 and 2.

([
Definition 4. We say that solutions of (4) have exponential dichotomy, if
(i) the phase space of (4) can be represented as 5 = J* ©J?, where J'@ are invariant
spaces of equation (4);
(ii) for arbitrary ug € J* (up € J*) solution u = u(t) of (4), (5) is such that y ||u(t)|| <
Ch(uo)e™ (g ||u(t)]| > Co(up)e™) for some a > 0 and all t € R,

Theorem 5. Let operators L, M € L(;§) be defined as in example 2 and condition
o"(M)NiR =0
hold. Then solutions of (4) have exponential dichotomy.

Proof. The estimates of solutions can be received in dependence of location of components
of L-spectrum of operator M. Due to condition (5) we can consider o (M) containing
the points of L-spectrum of operator M located in the right halfplane and construct
projectors P, P, and invariant spaces J', 32 respectively. Obviously, the needed estimates

for solutions hold.
O
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O HEKOTOPLIX CBOMICTBAX PEIIIEHNN OJHOIO
KJIACCA BOJIIOIIMOHHBIX MATEMATUYECKNX
MOJEJIEM COBOJIEBCKOTI'O THUIIA

B KBABNCOBOJIEBBIX ITPOCTPAHCTBAX

A.A. Bamviwasesa, Jotc. K.T. Aav-Hcasu

Wurepec k ypaBHeHusaM cODOJIEBCKOIO THUIIA 34 [IOCJIE/IHEE BPEMs CYIIIECTBEHHO BBIPOC,
6oJiee TOrO BO3HUKJIA, HEOOXOIMMOCTh UX PACCMOTPEHNS B KBA3MOAHAXOBBIX MPOCTPAHCTBAX.
[Mpudem HEOOXOTUMOCTH TUKTYETCS HE CTOJBKO YKEJAHUEM MOMOJHUThH TEOPUIO, CKOJIBKO
CTPEMJIEHHEM OCMBICIUTH HEKJIACCHYEeCKUE MOMETH MaTeMaTndeckoil (bu3mku B KBa3uba-
HAXOBBIX TTPOCTPAHCTBAX. 3AMETHUM €Ile, YTO yPaBHEHUsT COOOJIEBCKOTO TUTA HA3BIBAIOTCS
SBOJIIOIMOHHBIMA, €CJIM WX DPEIIeHusi CYIIECTBYIOT TONbKO Ha moiayocuR,. Teopusa rosmo-
MOP(MHBIX BBIPOXKIEHHBIX MTOJYTPYIII OMEPATOPOB, MOCTPOEHHAS paHee B HAHAXOBBIX MPO-
crpaHcTBax m mpocrpancTBax DPperre, mepeHOCHTCHS B KBA3UCOOOJEBBI MPOCTPAHCTBA IO-
caenoBarebHocTel. CTAThs COMEPKUT PE3YABTATHL O CYIECTBOBAHUN IKCIOHEHITHATBHBIX
JUXOTOMUN PENIeHUil IBOIOIUOHHOIO yPaBHEHUA CODOJIEBCKOrO THUIA B KBA3UCOOOJIEBBIX
npocTpancTBax. s moydenns 3Toro pe3yabTraTa, J0Ka3aHa OTHOCUTENIHHO CIIEKTPaIbHAS

TEeopeMa M CylIeCTBOBAHUE MHBAPUAHTHBIX [IPDOCTPAHCTB YPaBHEHUS.
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CrarTbs KpoMe BBeJIEHUs W CIHCKa JUTEPATYPhI CONEPKUT ABa maparpada. B mepom
oLIpeJesIIoTCH KBa3ubanaxosbl (KBa3uco001€Bbl) LPOCTPAHCTBA, U MHOIOYJIEHBL OT KBA3UO-
neparopa Jlammaca. Bojee TOro, mpUBOIATCS YCIOBHS CYIIECTBOBAHUS BBIPOXKIEHHBIX TO-
JIOMOP(HBIX TOJYTPYIII OMEPATOPOB B KBA3UDAHAXOBBIX MPOCTPAHCTBAX TOCIEI0BATEIBHO-
crefi. JIpyruMu CclIOBaMU, JOKA3BIBAETCSA MEpBas 4acThb o6obIeHus reopeMbl ComoMsaka—
Nocuapr Ha KBa3subaHAXOBBI IIPOCTPAHCTBA TOCIeA0BaTeabHOCTEH. Bo BTOpoMm maparpade
crpouTcs (hazoBoe MPOCTPAHCTBO OJHOPOJHOTO YPABHEHUd, & TAKXKE MOKA3BIBAETCS CYIIe-
CTBOBAHNE WHBAPWAHTHBIX MPOCTPAHCTB ypaBHEHUsS. KpoMe TOro, MOJyYeHBl YCIOBHUS Cy-
MECTBOBAHUS IKCIOHEHITHABHBIX TUXOTOMUI DENTeHui.

Karoueswie caosa: 2040mopdrvie 8bpostclentvie noAyzpynno, Kea3ubanarosv, npo-
CIMPAHCMBa; K8a3UCOBOAEEYL NPOCTNPAHCNEA; UHBAPUAHTNHOE NPOCNPAHCINGO; FKCTOHEHYU-

anvHBLE OUTOMOMUL peweuuﬁ.
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