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The existence theorem for systems of nonlinear Volterra integral equations kernels of
the first kind with piecewise continuous is proved. Such equations model evolving dynamical
systems. A numerical method for solving nonlinear Volterra integral equations of the first
kind with piecewise continuous kernels is proposed using midpoint quadrature rule. Also
numerical method for solution of systems of linear Volterra equations of the first kind is
described. The examples demonstrate efficiency of proposed algorithms. The accuracy of
proposed numerical methods is O(N~1).
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1. Problem Statement and Existence Theorem. In this paper we study systems of
nonlinear Volterra integral equations of the first kind with piecewise continuous kernels
using our previous results [1, 2, 3, 5|, where theory of linear scalar Volterra integral
equations of the first kind with piecewise continuous kernels have been addressed.
Consider the following system of nonlinear Volterra equations of the first kind

/tK(t,s,x(s)) ds=f(t), 0<s<t<T, f(0)=0. (1)

We make the following assumptions:
A) vector-function K (t,s,z(s)) is defined for —oo < z < 00, 0 < s <t < T and has a
discontinuities of the first kind at the curves s = o;(t), i =1,...,n— 1, i. e.

Ki(t,s)G1(s,z(s)), t,s € Dy,
K(t,s,x(s)) = e e
K, (t,s)Gn(s,2(s)), t,s € Dy,

where D; = {t,s | ai_1(t) < s < a;i(t)}, i = 1,...,n, ag(t) = 0,a,(t) = ¢, f(t) =
(fi(t), ..., fm(@®)), z(t) = (x1(1),...,2m(t)), m x m matrices K; are defined, continuous
and have continuous derivatives with respect to ¢ in the corresponding domains D;,
fit),j=1,....,m, and a;(t), t = 1,...,n — 1 have continuous derivatives, 0 < a/(0) <
< al_1(0) <1, £;(0) = 0,0;(0) =0, 0 < a1(t) < aot) < ... < an_1(t) < t for
te (0,17;
B) matrices K;,7 = 1,...,n have continuously differentiable with respect to ¢ continuation
into compact {0 < s <t < T}.
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For the theory of systems of linear integral equations with piecewise continuous kernels
readers may refer to monograph [5]. The objective of this paper is to generalize this theory
on nonlinear case and suggest algorithm for numerical solution for such systems.

It is to be noted that Volterra equations with piecewise continuous kernels are employed
in energetics and in other fields for evolving dynamical systems modeling. Here readers
may refer to bibliography in [2, 4].

Let us first formulate the sufficient conditions for existence and uniqueness of the
solution of system (1).

Theorem 1. Let conditions A) and B) be fulfilled for 0 < s < t < T. Let Lipchitz
condition ||Gi(s,21(s)) — Gi(s,22(8)) — (x1(s) — z2(8))|| < ¢ ||lx1 — 2|, V21,20 € R,

n—1
be also fulfilled and g, +»  }(0) [|[K,(0,0)""(K;(0,0) — Ki11(0,0))|| (1 + ;) < 1. Then
i=1
It > 0 such that system (1) has unique local solution in Cjy . Moreover, if glthT(t -
an-1(t)) = h > 0 then such local solution can be continuously extended to the whole
domain [1,T) using combination of the method of steps and successive approrimations.

Proof of this theorem is similar to the proof of Theorem 3.2 in 2] using the Lipchitz
condition.
2. Numerical Solution. In this section we construct an algorithm based on of the
midpoint quadrature for numerical solution of nonlinear Volterra integral equations (1).
We also included the numerical examples to demonstrate the efficiency of the proposed
scheme.

For sake of clarity we first consider the scalar case. To construct a numerical solution
of equation (1) on the interval [0, 7| introduce the mesh (not necessarily uniform)

O=ti<ti<ta<...<tn=T, h = max(ti—ti_l) :O(N_l) (2)
i=1,N

Following our paper [1] we search an approximate solution of equation (1) as following
piecewise constant function

wy(t) = wi6i(t), t € (0,T), 6;(t) = { é: g i ; ii = (ti-1, ti; 3

i=1

with undetermined yet coefficients z;, 1 = 1, V.
In order to find z let us differentiate both sides of equation (1) with respect to ¢

n

a;(t) (t.s
=35 [ Pt

i=1 i—1(t)

+a () Ki(t, o (1)) Gilu(t), w(ai(t))) — oy () Ki(t, aiy (1)) Giou (L), l’@z‘—l@)))) :

Then  f'(0) = Z(a;(O)Ki(O, 0)G;(0,z0) — a}_;(0)K;(0,0)G;(0,z9)).  The  desired
i=1
coefficient ¢ is included in nonlinearly in the right hand side. We use the Van Wijngaarden
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— Dekker — Brent method to find this coefficient zy (see e.g. |6]). Below we shall use the
notationf, = f(tx), k = 1,..., N, and v;; denotes the index of mesh’s segment (2) that
contains the value a;(t;), i.e. ay(t;) € Ay, Obviously vy < j fori=0,n-1,j=1N.

Let us now assume that the coefficients xo,xl,.. ,Tp_1 of approximate solution are
Qg tk

known. Equation (1) in the knot t = ¢ is Z/ K;(ty, $)Gi(s,z(s)) ds = fg, and it
Qi1 tk

can be presented as [1(ty) + I(tg) + -+ + I ( k) = fr, where

vl’“ ! a1 (tk)
L(ty) = / Ky (ty, $)G1(s,z(s ))ds+/ Ky (t, s)G1(s, z(s)) ds,

toy =1

Vp—

]n(m:/ Kty $)Ga(s, 2(s)) ds + Z / Ky (t, )Go(s, z(s)) ds.

n—l(tk) J=Un_ 1k+1

L. Ifv,_1 6 # v, p=2,...,n— 1 then

L(te) = / T Kt 5)Gy(s,a(s) ds+ S [ Ky(te, 5)Gls, () ds+

p—1(tk) j=vp_1 k1Y L1

ap(tk)
[ Kt s)Gys s s
t

vpk 1

ap(tk)
2. Ifvp1p =Vpp, p=2,...,n— 1 then [,(t;) = / ( )Kp(tk, $)Gp(s, x(s)) ds.
ap—1(tk
It is to be noted that the number of terms in each row of this formula depends on array
v;j, which can be determined based on input data: functions «;(t), ¢ = 1,n — 1 and fixed
(based on concrete V) mesh.
Each integral in the last equation can be approximated using the midpoint quadrature
rule, i.e.

ap(ty)
[ K (14, 5)Cpl5,2(5)) ds = (0p(t) — ) Ky (Fi52) Gy (552 2 (55).

t tm . . .
where m = v, — 1, 55, = % Moreover, on the intervals where the desired function

is determined, we select xn(t) (i.e. t < tx_1). On the rest of the intervals the unknown
value x; appears in the last few terms. We determine the number of such terms using
the analysis of array v;;. In order to find x, we use the Van Wijngaarden — Dekker —
Brent method and proceed with computation of x;,;. The accuracy of proposed method
is € = max |z(t;) — xn(t;)|, where Z(t;) and zx(;) are exact and approximate solution in

\,L\
the point ¢; correspondingly. The method has order of O (N)
Let us now consider the numerical solution of the following system of linear integral
equations

/tK(t,s)$(s) ds=f(t), 0<s<t<T, f(0)=0, (4)
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where m x m matrix kernel K(¢,s) on the compact 0 < s < t < T has 1st kind

discontinuities on the curves s = a;(t),i =1,...,n — 1.
An approximate solution of system (4) is searched again as a piecewise constant
function zy(t) = (ng) (t),... Lzl (t))’, where
(N) N) . 1, fOI'tEA —(] 1,tj];
Zx 0. te 0Tl a0 ={ § Sy )

with coefficients ng;]), 1=1,m, 7 =1, N.
Let us introduce the following mesh of knots

O=to<ti<ta<...<tpy :T, h = max(ti—ti,l) = O(Nil) (6)
i=1,N

for numerical solution of system (4) on the interval [0,7]. Make the following notation
fir = filty), k=1,...,N, K@P)(t, s)is (i, p)-th entry of matrix K(t,s),i=1,m, p=
1, m. This is the function with 1st kind discontinuities on curves oy () < as(ty) <

< o1 (ty), 1€

/ KOP) (t),, s)x ds-Z / o) (1, 5)z,(5) ds. (7)

aq—1(tr)

Let us differentiate both sides of equation (4) with respect to ¢ in order to find zy(0)

m.on o (t) o (gi7p) 7
=33 [ D s

a—1(t)

+af () Kt i)z (i(t)) — ol (DELP(E, ai—l(t))%(ai—l(t))) :

Since all the components x,(0) of the desired vector xz(0) can be assumed constant, we
gain the following system

n

f1(0) = Z( K()(0,0)(a(0) — a;1<o>>> >l 0). (8)

q=1

Solve the system of linear algebraic equations (8) and determine a: (0) for p=1,m.

Let coefficients as(N), :v(N), . ,x(Nl be known. Rewrite system 4 in the point t = .
p,0 7 p1 p,k—1

For ith row we have

m ty i “ b1 i
Z/ K(ZJJ) (tka S)Z'p(s) ds = fz(tk) — Z/ K(va) (tka S).I'p(S) ds.
p=1 7 tk—1 p=1 70

Taking into account (5) we obtain

m k-1
/ K(Z’p) (tk,s) dsx k = fik — E g / K(Z’p) (g, s) dsx
p=1 j=1
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Finally taking into account (7) we obtain the following system of linear algebraic equations

q(tk)
/ zp tka
ag—1(tk)

which is solved to determine coeflicients J:
3. Numerical Examples

m k—1 n

sl = -3 3 [

p=1 j=1 ¢=1"¢

m

2.2

p=1 ¢=1

K(”D (ty, s )dsx;{\;), 9)

q— ltk)

for =1m

1.

(—1)(sin®x

(t —1)2sinx(s) ds + / (s)+1)ds

t/4

t/4
/.

(1+2t)

t/8
/ (1+1t—s)sinz(s) ds+
0

1 Tt t Lt Lt 1t 1
—2—-t+ —cos—= + sin — — 2tsin— — —sin - + —sin2¢, t €

8§ 8 8 4 4 2 4

The exact solution is Z(¢) = t. Tab. 1 demonstrates errors ¢ for various step sizes.

Table 1

0, 2].

Errors for various h (example of nonlinear equation)

1/32

1/64

1/128

1/256

1/512

1/1024

1/2048

0,345567

0,178316

0,091509

0,047107

0,023892

0,012031

0,006037

t/2 xl(S)

To(s)

t+ s
t+ s

1+t+s,

_s_
1+t

1—ts
1—ts

2 +ts,
14+1t+ s,
t

L

(s)

where exact solution is Z(t) <
™ _

s J7i(ty) = 2] i = 1,2

and computed solutions in the knots t; for various step sizes.

) dst
)

[0, 2]. Tab. 2 demonstrates errors &; =

t8 1129¢° 2027t4
40660 + 20480 + 24576

[

_ 5562
192
55¢3
192

—1

1)(

1+t

1+t+s, z1(s)

1, 1

—17t8 4943t5 2107t
t+1 20480 + +

24576

61440

o

3
t/8)7t c

t2
, where 7;(t;) and xEN) (t;) are corresponding exact

Table 2

Errors for various h (example of systems)

1/32

1/64

1/128

1/256

1/512

1/1024

1/2048

€1

0,054205

0,028218

0,014392

0,007267

0,003652

0,001830

0,000916

€9

0,127717

0,064389

0,032327

0,016196

0,008106

0,004055

0,002028
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Conslusion. In this brief paper we continue our studies of Volterra integral equations of
the first kind with discontinuous kernels [1-5|. We further develop the numerical methods
[1] and suggest methods for solutions of systems of such linear equations and nonlinear
equations. The midpoint quadrature rule is employed and the error order is O(1/N). The
numerical method is evaluated on synthetic data and demonstrated uniform 7T-convergence
[7] of the sequence {xx ()}, to solution Z(t) with rate O(1/N).
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PASPEININMOCTD 1 AJITOPUTM YNCJIEHHOI'O
PEIIIEHNS CUCTEMBI HEJIMHENHBIX MHTET'PAJILHBIX
YPABHEHUN BOJIBTEPPA 1 POJIA

C KYCOYHO-HEITPEPBIBHBIMU AJIPAMN

u.P. Mygpmaxos, /I.H. Cudopos

JlokazaHa TeopeMa CyINIECTBOBAHUS W Pa3paboTaH YUCJEHHBIH METOJ PeIeHusi CH-
CTEM HEJIWHEHHBIX HWHTErPAJbHBIX ypaBHeHuii Bosibreppa mepBoro poja € KyCOYHO-
HENPEePBbIBHBIMHU f/IpaMU, BO3HUKAIOIIUX B MOJAEJINPOBAHNN PA3BUBAIOIINXCA TUHAMUYIECKUX
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cucreM. B kauecTBe KBaIpaTypHOH (HOPMYJIBI UCIIOIB3YETCST METOM, CPEJHUX TPIMOYTOJIb-
HUKOB, IIPU 9TOM DELIEHHe MIIETCs B BUJE KyCOYHO-NOCTOAHHOH (yHKumu. s peienuns
HEJTMHEHHOrO yPABHEHHsT NCTIOIB30BaH KOMOMHUPOBAHHLLH MeTon JIskkepa u Bpanra. [pwu-
BEJICHBI PE3YJIbTATHI PACIETOB JJIsl CKAJISPHOTO HEJTMHEHHOrO YPABHEHUS W JIJIsT CHCTEM JIV-
HEHHBIX ypaBHeHUH. TOYHOCT MPEIIOKEeHHBIX aucaeHabx metoaos O(1/N).

Kmoueswie caosa: unmezparvuve ypasuernus Boavmeppa I poda; passusarowueca cu-
cmembl; Paspuenoe A0po; HEAUHETHbE CUCTEMbL; HUCAeHHbE Memody; memod [Doxkepa u

Bpanma; xeadpamyproti opmyaovs.
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