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ON THE ONE-DIMENSIONAL HARMONIC OSCILLATOR
WITH A SINGULAR PERTURBATION
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In this paper we investigate the one-dimensional harmonic oscillator with a left-
right boundary condition at zero. This object can be considered as the classical
selfadjoint harmonic oscillator with a singular perturbation concentrated at one point.
The perturbation involves the delta-function and/or its derivative. We describe all
possible selfadjoint realizations of this scheme in terms of the above mentioned boundary
conditions. We show that for certain conditions on the perturbation (or, equivalently, on
the boundary conditions) exactly one non-positive eigenvalue can arise and we derive an
analytic expression for the corresponding eigenfunction. These eigenvalues run through
the whole negative semi-line as the perturbation becomes stronger. For certain cases an
explicit relation between suitable boundary conditions, the non-positive eigenvalue and the
corresponding eigenfunction is given.

Keywords: harmonic oscillator; singular perturbation; selfadjoint extensions; negative
eigenvalues.

Introduction

In this paper, we use the following notations. Set R, = (0,00) and R_ := (—00,0) and
for functions f : R — C define their restrictions fy := f|g,. The standard inner products
on Ly(R) and on C" are both denoted by (-,-). There will never be danger of confusion.
Given a sesquilinear form [-, -] on C", we call a subspace L neutral if [u,v] = 0 for every
u,v € L. A subspace L is called mazimal neutral if it is neutral and not properly contained
in any other neutral subspace (see [8] for details).

The one-dimensional harmonic oscillator is given by the formal differential expression

The aim of this paper is to investigate several possible realisations of 2l as a symmetric
linear operator and determine all possible selfadjoint extensions.

By the Liouville — Green asymptotic formula |5, Theorem 2.2.1], it is known that there
are solutions y+ of Ay = Ay with the following asymptotic behaviour for |t| — oo:

yﬂt)rvﬁexp(ia/\/32—2)\4—}1(@)2 ds) (1)

for |a| large enough. This shows immediately that 2 is in the limit point case both at 400
and —oo.
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In order to assign an operator to the differential expression 2, we need to specify a
domain of admissible functions. The minimal operator associated with 2l is

AT QUf, D(A™) = O (R). (2)

Since 2 is in the limit point case both at +o0o and —oo, the operator A™® is essentially
selfadjoint (see, e.g. [12, 7.1.3]). Its closure is the so-called mazimal operator associated to
2

Af =2Af, DA)={f:R—=C: f, [ abs. cont., f, Af € Ly(R)}. (3)

Note that .
AT C Amin = A = A%,
It is well known that A has a compact resolvent, and that its spectrum consists of simple
eigenvalues:
1
o(A) = 0,(A) = {n+§:n€No}. (4)
The corresponding eigenfunctions are

Un(t) = e 2, Hy(t)
where H, is the nth Hermite polynomial of order n,

2dn 2
Hnt:_lnt_ft
(1) = (-1 St

and the normalization factor ¢, := (W%an!)_% is chosen such that (1, ¥m) = Onm-

Remark 1. A straightforward calculation shows that if w is a solution of (24+X)u = 0, then
(t — 4)" wis asolution of (A+A—n)u = 0and (t+ &)" wis a solution of (A+A+n)u = 0.
In particular, all eigenfunctions of A can be obtained by the recursion

d

o(t) =77 2e 2 (t) = cn (t - a)ne—f"”, n>1. (5)

Note that (% + t)n o = 0, in agreement with the fact that A has no negative eigenvalues.

From the recursion formula (5) it is clear that 1), is an even function if n is even, and
that it is an odd function, if n is odd.

In Section 1 we consider the restriction of the harmonic oscillator to the open half
lines R.:

ARF(t) = Af (1), D(AE™) = CZ(Ry), (6)

f, f" abs. cont.,
Afle. € L2<Ri>} -0

ATF(t) = Af (1), D(A}P™) := {f Ry —» C

With them we define . .
Ag = AT @ AT (8)

Clearly, D(AS) = D(Arilax) D D(A:I_lax)'
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In Sections 2 and 3 we will study several restrictions of the operator A by imposing
conditions on functions in its domain at ¢ = 0. We define the closed symmetric operators

Bf =2f, D(B):={f€D(A): [(0) =0}, (9)
Cf=2f,  D(C):={f € D(A): f(0) = '(0) = 0}. (10)

So we have the following chain of operators
AyCAy=CCBCA=A"CB CC= A

With exception of the first one, all inclusions are one-dimensional. We will classify all
selfadjoint extensions of B (Section 2) and C' (Section 3) in terms of conditions on the
behaviour at 0 of the functions in the corresponding domains. Slightly abusing language,
we will call these conditions boundary conditions at 0. We will not use the von Neumann
extension theory for symmetric operators, but will identify selfadjoint extensions with
maximal neutral subspaces of C2, C? and C*, respectively, equipped with an inner product
induced by the condition (2f, g) = (f, Ag) for f, g in appropriate spaces.

In particular, it turns out that the selfadjoint extensions of B can be parameterized
by one real parameter. Every selfadjoint extension is of the form

D(By) = { FEeD(BY)  V2cos(0) £(0) = sin(6) [f(+0) — f’(—o)}} (11)

for 6 € [0, 7). Any function of D(By) is continuous at 0 (Lemma 4), but its derivative has a
jump proportional to the value of the function at 0. There is a one-to-one correspondence
between the constant of proportionality and the particular selfadjoint extension. The
operators By can also be interpreted as the classical harmonic oscillator with a d-interaction
at 0 on a bigger Hilbert space, see Section 4:

Byf = <—ld—2 + Lp + c5) f(t),

2de2 2
with ¢ = °°t29. There is a constant v > 0 such that if ¢ > —~, then By has only positive
eigenvalues, if ¢ = —, then 0 is an eigenvalue of By, and if ¢ < 7, then By has exactly one

negative eigenvalue. This eigenvalue decreases monotonically to —oo as ¢ tends to —oo, or
equivalently, € tends to .

Finally, in Section 4 we give an interpretation of the operators By and another
selfadjoint extension denoted by Cg as operators with a /- and ¢’-interaction at 0 in
a Hilbert space H_ D Ly(R). Some bibliographical notes are given in Section 5.

1. The Harmonic Oscillator on the Half Line

First we restrict the harmonic oscillator to the half lines Ri. The corresponding
minimal operators are given in (6). These operators are in the limit point case at
400 and in the limit circle case at 0, hence they are not essentially selfadjoint. Their
adjoint operators are the ones in (7). Note that for f € D(A}*) the one-sided limits
f(40) := tli%}F f(t) and f'(4+0) := tlir(g f'(t) exist. Similarly, for f € D(A™®) the one-

sided limits f(—0) := 11151 f(t) and f'(—0) := liI(l)n f'(t) exist.
t—0— t—0—
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All selfadjoint extensions of AT™ are given as restrictions of AT by appropriate
boundary conditions at 0. In Lemma 2 we will show that exactly one boundary condition
is needed.

Recall that the defect index of a closed densely defined linear operator 17" with respect
to z € p(T) is given by

n(T, z) := dim (ker(T™ — z)).

It is well known that the defect indices are constant in the complement of the numerical
range
W(T) :={(Tz,z) : x € D(T), ||| = 1},

see, e.g., |9, Ch. V|, Theorem 3.2]. It is easy to see that W (T') C R for a symmetric operator
T. Hence its defect indices are constant in the upper and lower complex plane. Denote
them by

ny(T) = dim (ker(T™" — 24)), n_(T) = dim (ker(7T™ — z_)),

for any 2. € C with Im(24) € Ry. By the von Neumann theory, a symmetric operator

has selfadjoint extensions if and only if its defect indices are equal (see for instance [14,
Ch. 8.2]).

Lemma 1. The defect indices of AY™ are ny (AP™) =n_(AP") =1 and

W(AY™) C Ry (12)
Proof. We show the lemma only for AT, For all f € D(AT™), integration by parts yields
g g == f@F@[ 4 1P+ aPde = [ 19+ de> 0
0 0

which shows (12). Hence the defect index of A% is constant in C\ Ry.
It can be easily verified that two pairs of independent solutions of (2 + %) f =0 are

o0

bilt) =3, g.(t) = b / e~ ds, (13)
bult) =¥, (1) = b / e ds = (—t). (14)

Observe that ¢ + ¢_ = /7 ¢1. Clearly ¢1|r, ¢ L2(Ry), but ¢4 |r, € Lo(Ry). Therefore
ker(AD™ + 3) = span{¢y |z, } and ny (A7) = n_(AP") = 1. |

Analogous calculations show that (A™" f, f) > 0 for all f € D(A™"), ¢1|r_ ¢ L2(R_),
¢_|r_ € Ly(R_), thus ker(A™> + 1) = span{¢_|r_} and ny (A™") = n_(A™") = 1.

O

The following result on selfadjoint extensions of AP follows easily from the general
theory of Sturm — Liouville operators. For the convenience of the reader, we present it
here with a proof in order to illustrate the method of indefinite inner product spaces for
the description of selfadjoint extensions.

76 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2016, vol. 9, no. 1, pp. 73-91



MATEMATNYECKOE MOJIE/INPOBAHUE

Lemma 2. All selfadjoint extensions of A™™ are one-dimensional; they are restrictions
of AL of the form

D(Asp) = {f € D(AL™) : cos(0) f(+0) = sin(0) fL(+0) } (15)
with 6 € [0, ).
Proof. We show the claim only for A%"™ since the corresponding assertions for A™" follow
analogously.
By Lemma 1, the defect index of AP is equal to 1 on C\R,. Two functions f, g € D(AD)

belong to a particular selfadjoint extension of AP if and only if (AT* f, g) — (AT f, g) =
0. Integration by parts leads to the condition

0= (A} f,g) — (A}, 9) = f(+0)7 (+0) — f'(+0)g(+0). (16)

On C? let us define the Hermitian inner product

) -0 9 () (1)) = o

Then f, g belong to a particular selfadjoint extension of A" if and only if (f(+0), f'(40))"
and (g(+0), ¢’(+0))* belong to the same maximal neutral subspace of (C?,[-, -]). Clearly
er = (1,1)" is a positive and e_ = (—1, i)" is a negative vector and |le,| = |le_|. Hence
all maximal neutral subspaces are given by

s { (07 )} = (o { (70} o<

min

Therefore all selfadjoint extensions of AJ"™ are given by

pn={reovaer (1) e
= {f € D(A™) . f(+0)(1 4B — i (40)(1 — e—ZiG)}

with 6 € [0, 7). The last description yields (15).

O
Remark 2. Let f € Ly(Ry) and g € Ly(R_) such that g(x) = f(—x) for z € R_. From
formula (15) it is clear that f € D(A, ) for some 0 € (0,7) if and only if g € D(A_ ;)
and f € D(Ayp) if and only if g € D(A_p).

Recall that {¢, : n € N}, the set of eigenfunctions of the harmonic oscillator on R
(see (5)), is an orthonormal basis of Ly(R). Denote

wn,—i- = ¢n|R+a Q/)n,— = ¢n|R77 n c I\IO- (17)

Clearly both {19, + : n € No} and {99,414 : n € Ny} form a complete orthogonal systems
on Ry. With these observations we can calculate the spectrum of the operators A, ¢ for
0 =0andf=3.

Corollary 1. Let Ay be as in (15).
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1. 0(Aso) = 0p(Aso) = {2n+ 2 : n € No} and the corresponding eigenfunctions are
Yoant1,4, 1 € No.

2. 0(Arz) = 0y(Asrz) = {2n+ 5 : n € No} and the corresponding eigenfunctions are

2
Yon+, n € Np.

Proof. We will prove the claim only for A4 . All other statements are proved analogously.
Since all 19,1 are odd functions, it follows that 9,,1(0) = 0 and therefore their
restrictions ts,41,4 belong to D(A, o). Moreover, Ay g¥oni1+ = (21 + 2)than41,4, hence
{2n+ 32 :n e Ny} C 0,(Asp). Now the claim follows from the completeness of the system

{oni14+} in La(Ry).

From the asymptotic expansion (1) of solutions of the equation 2y = Ay it is clear thaDt
for every A € R there is exactly one solution y, which is square integrable on R, . It belongs
to the domain of exactly one selfadjoint extension A, y, namely the one with 6 € [0, 7)
such that cosfy,(0) = sinfy}(0). The expansion (1) also shows that all eigenvalues are
simple.

Since W (A™) C (0, 00), the non-positive spectrum o(Ay) N (—o0, 0] of any selfadjoint
extension Ay consists of at most one eigenvalue of multiplicity at most 1, see [14, Ch. 8.4,
Cor. 2|. The lemma below deals with these eigenvalues, but as a first step we need to define
some functions.

Let w > 0. On [0, 00) consider the Cauchy problem

(—%% + %ﬂ) u(t,w) = —w?ult,w), (18)
uw(0,w) =1, uy(0,w)=0. (19)

Let us write u(t,w) as power series

u(t,w) = ap(w)t™. (20)
n=0
Replacing (20) in (18) we obtain ag,+1(w) = 0 and

ap(w) =1, ay(w)=w?

1

aopia(w) = (21)
ot (2n +2)(2n + 1)

(2w2ag, (W) + agn_o(w)), n>1.

Let us show that the series converges for all £ > 0. To this end we will show that for every
w > 0 there is a constant g(w) such that

agn(w) < @, n € N. (22)
n!
Assume that this inequality is true for numbers n — 1 and n. Then, due to (21), we have
1 ) o)
2n+2)(2n+1) n! (n—1)!

Aon42 < (

 qw) w? n
 (n+1)! (2n+1 +2(2n+1))‘
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Since — % for n — oo, there is a natural number ng(w) such that L

w? 4 n
2n+1 | 2(2n+1) 2n+1

s < 1 for every n > no(w). Thus, (22) holds if we take

¢(w) = max{1, 2! ay(w),..., no!- agy,(w)}.

Due to (22) the series (20) converges and u(t,w) < g(w) e’ for w >0, ¢t > 0.

Note that all ay,(w) are positive increasing functions of w, so for every t > 0, u(t,w) is
an increasing function with respect to w and for every w > 0, u(t,w) is a positive increasing
function with respect to t, so u(t,w) ¢ Lo(Ry). For the special case w = 0 we obtain

> t4n
u(t,0) =1+ - : (23)
; 1, 4k(4k — 1)
Due to the inequalities
! < L < ! eN
n
322n(2n—1) 4n(dn—1)  222n(2n—1)’ ’
we have
x? x?
cosh <§> < u(t,0) < cosh <?), t > 0. (24)

Now let us define (compare with (13))
v(t,w) = u(t,w) /(u(s,w))_2 ds (25)
t

and

G(w) :=v(0,w) = / (u(s,w))_2 ds. (26)

Lemma 3. Let Ay be as in (15) and let ay = arctan(G(0)).

1. Ay g has the eigenvalue O if and only if 0 = m — aa. It has a negative eigenvalue if
and only if 0 € (T — aa, m). Moreover, let \; be eigenvalues of Ay g, for j =1,2. If
A <A <0, thenm—ay <0 <0y <.

2. A_p has the eigenvalue 0 if and only if 0 = aa. It has a negative eigenvalue if
and only if 0 € (0,a4). Moreover, let \; be eigenvalues of A_g, for j = 1,2. If
/\2</\1<0, then aq > 07 > 605 > 0.

Proof. We proof only the item 1. The claims in the item 2 follow from the item 1 and
Remark 2. Since u(t,w) is positive and increasing both in ¢ and w, it follows from (24)
that

oo

v(t,w) < u(t,w) / (u(t,w))fl (u(s,w))fl ds = /too (u(s,w))fl ds

t
00 00

S/(u(s,O))_1d3</(cosh(s2/3))_lds € Ly(Ry).

t t
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It is easy to check that v(-,w) satisfies (18) and

o0

+u'(t, w) /(u(s,w))_zds,

t

ulbw) =~ o)

therefore, by (19), v;(0,w) = —1. It follows from (26) that

(0, w) = — (27)

which is equivalent to the boundary condition (15) with 6 such that tanf = —G(w), that
is, § = —arctan(G(w)) € (7/2, 7). Observe that G(w) is decreasing and continuous in w

and lim G(w) = 0. Hence 6 is increasing in w and tends to m as w — oo. For the special
Ww—00

case w = 0 we obtain 0 = 7/2 — a4 where ay = arctan(G(0)).
O

2. One-Dimensional Restriction of the Harmonic Oscillator
and Classification of All Selfadjoint Extensions

In this section we consider the harmonic oscillator B on the real line defined by (9). The

operator B is closed and symmetric, but not selfadjoint. Let us recall also the definition
(8) of Ao.

Remark 3. The domain of Ay can be viewed as D(Ay) = D(A™™) @ D(AM™), hence it
is easy to see that its adjoint is given by

o [Amp), >0,
Aot (1) = {AmaXf(t), t<0,
D(A4y) = {f € L2(R) : fr € D(A}™)} = D(A™) & D(A}™).

It should be noted that Af and the selfadjoint extensions By and Ck of B and C
which will be calculated below are not differential operators on Ly(R) in the classical
sense because functions in their domains need not be continuous or differentiable in 0.

Lemma 4. We have the chain of extensions Ay C B C B* C Aj and

B*f(t) = Af (1),
D(B) = {f R —C : fu & D(AT™), f(—0) = f(+0)}.

Proof. Note that Ag C B, hence B* C A§. Let f € D(B) and g € D(A{). Then f and f’
are continuous in 0, f(0) = 0 and g+ € D(AT*). Hence integration by parts yields

0 o] 0 00
(Bf,g) — (f, Ajg) = — ZO gt — 0/ gt +_£ fg"dt + O/ 19" di

= f'(0)(g(+0) — g(-0)).
Therefore g € D(B*) if and only if ¢ is continuous in 0 and in this case B*g = Afg.

80 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2016, vol. 9, no. 1, pp. 73-91



MATEMATNYECKOE MOJIE/INPOBAHUE

O
Note that functions in the domain of B* are continuous but their derivative may have
a discontinuity in 0.

Analogously to Lemma 2 we now classify all selfadjoint extensions of B.

Proposition 1. The defect indices of B are ny(B) = n_(B) = 1. Hence all selfadjoint
extensions of B are one-dimensional restrictions of B*. They are given by (11).

Proof. Observe that B is a restriction of A, hence for the numerical ranges we have the
inclusion W(B) C W(A) C [0,00), so the defect index of B is constant in C \ [0, 00) and
it suffices to show that dim (ker(B* + 3)) = 1.
The proof of Lemma 1 shows that every Lo-solution of (% + 3)f = 0 must be of the
form
f=0d-X(—000) + 1D+ X (0,100) (28)

with ar € C and ¢4 as in (13) and (14). Here x(—s,0) and x(o,+) are the indicator
functions of the sets (—oo,0) and (0, +00) respectively. Clearly every function (28) belongs
to D(4;) and f(—0) = %+/m and f(+0) = S=/7. For f € D(B*) we must have that

f(=0) = f(40). Therefore ker <B*—|—%> = span{d_ X (—co,0) + P+ X(0,+00) }- Thus n(B, —1) =
1.

Let us now determine all selfadjoint extensions of B. This is equivalent to determine
all selfadjoint restrictions of B*. Let f,g € D(B*). Performing integration by parts we find

(f,B*g9) = (B"f.9) = [f'(=0) = f(+0)]5(0) — [7'(—0) — 7' (+0)] f(0).

Set
0 —1 1
G = 1 0 O
-1 0 0

Then f,g belong to a particular selfadjoint extension of B if and only if
(£(0), f'(=0), f'(+0))" and (g(0), ¢'(—0), ¢'(+0))* belong to a maximal neutral subspace
of (C3,[-, -]) where

X U T n
2|, | Y2 =(G x|, [0 =i[21(Us — Vo) + 71 (22 — 23)] .
T3 Y3 T3 Y3
The eigenvalues of G are 0 and 4++/2 with eigenspaces
ker G = span {(0, 1, 1)},

L. :=ker(G — v/2) = span {(i\/ﬁ, -1, 1)t} ,

L_ :=ker(G + \/5) = span {(—i\/ﬁ, -1, 1)t} .
Note that Ly are maximal positive and maximal negative subspaces of C? respectively.

Hence any maximal neutral subspace of C? has dimension 2. They are of the form ker G ®
{v+ Kv:v € ker(G — +/2)} where K is an isometry from L, to L_. Clearly all such
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isometries are of the form vy +— e 2% _ where vy € Ly. In summary, all maximal neutral

subspaces are

0 V2 —iVv2

Lg = span ), [ =1 ]+ -1 , 0 €0,m).
1 1 1
This can be rewritten as
0 V2 sin() V2 cos(6) -
Ly =spang | 1], | —cos(f) = | span sin(6)
1 cos(0) — sin(0)
It follows that f € D(By) if and only if f € D(B*) and
V2cos0 f(0) + sinf [f'(=0) — f'(+0)] = 0. (29)
O
Remark 4.

1. Observe that functions f in D(B)* which satisfy
{(f(0), f'(=0), f'(+0)} € ker G belong to D(B).

2. The selfadjoint extensions of B can be divided into the following cases:

(a) € = 5. In this case the boundary condition (29) is simplified to
f(=0) = f'(+0) = 0.
That is, f and f’ are continuous and we obtain the classical harmonic oscillator:
Bﬂ-/g == A
(b) @ = 0. In this case the boundary condition (29) is simplified to f(0) = 0.
(c) 6 € (0,7)\ {m/2}. The boundary condition (29) can be written as

70 = 2070 - -0

Hence any function in D(Byp) is continuous but its derivative has a jump in
t = 0 which is proportional to the value of f in 0. Two different selfadjoint
extensions of B have different constants of proportionality.

3. For every n € Ny, the function 9,1 from (5) is an eigenfunction of By with
eigenvalue 2n+3/2. So the odd eigenvalues of the harmonic oscillator are not affected
by the boundary condition at 0.

An interpretation of these operators as a differential operator with a d-interaction at
0 is given in Section 4.

Let A € C. By the asymptotic expansion (1) the equation Ay = Ay has square
integrable solutions y+ on R. which are unique up to a constant factor. Let us define

y(:zc) _ {y+(£(]>, x> 07 (30)

y+(_$)a z <0.
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Then clearly y € D(B*) and it is, up to a constant factor, the unique solution of (B*—\)y
0. Moreover, y € D(By) where 6 is the unique number in [0,7) such that v/2cosf f(0) =
sin ¢ [f'(+0) — f'(=0)].

This shows that, as in the case of selfadjoint extensions of Ay, every A € R appears as
eigenvalue of exactly one selfadjoint extension of B and that every eigenvalue is simple.
Moreover, any given By can have at most one negative eigenvalue.

As in Lemma 3 we can identify all 6 such that By has a negative eigenvalue.

Lemma 5. Let By be as in Proposition 1 and let ap = arctan(%) with G as in (26).

Then By has the eigenvalue 0 if and only if 0 = © — ap. It has a negative eigenvalue if

and only if 0 € (m — ap, ). The corresponding eigenvalue X = —w? can be found via the
equality tan(0) = —%. Moreover, let A be eigenvalues of By, for j =1,2. If \a < Ay <0,

then m — ap < 0 < 0y < .

Proof. Tet A = —w? < 0 and y be as in (30) with y, = v(-,w) (see (25)). Then y is

an eigenfunction of By with eigenvalue \ if and only if tan(f) = —%. Hence negative

eigenvalues occur if and only if 6 € (7 — arctan(%), 7). Since G is decreasing in w with

lim,, o, G(w) = 0, also the last claim follows.

O
For A € —(2N — 1) we can calculate the corresponding eigenfunctions by a recursion

2
formula.
Lemma 6. Let n € N and ¢4 be as in (13) and (14). Set ¢xn(t) = (& +¢)" ¢o(t) for
t e Ry and
dra(t), t>0,

b all), L<0.
Then s, € D(B*). That is, ug, defines a selfadjoint extension By of B and it is an

eigenfunction of By with eigenvalue —2n — %

un(t) ==

Proof. Clearly u,, € D(AJ®). It is easy to check that ¢ (t) = ¢_(—t) for t > 0. Moreover,
a straightforward calculation shows

1
(Ql+n+§> ¢i,n:O-

Hence ¢ ,(t) = (—1)"¢_ ,,(—t) for t > 0. So ua, is continuous in 0, and therefore it belongs
to D(B*). If in addition we had uj,(—0) = uh,,(+0), then us, € D(A), and —2n — 3 would
be an eigenvalue of A, in contradiction to (4).
O
3. Two-Dimensional Restriction of the Harmonic Oscillator
and Classification of Its Selfadjoint Extensions

Let us further restrict the harmonic oscillator on the real line. We consider the following
restriction C' of the selfadjoint operator A:

Cf=Af,  D(C):={feD(A): f(0) = f(0) =0}
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The operator C is closed and symmetric, but not selfadjoint. It is easy to see that
C* = Aj.

The operator C is closely related to the harmonic oscillator on the half lines R because

C'= (C") = (&))" = &g = Amm o Ay, (31)

Analogously to Lemma 2 and Proposition 1 we now classify all selfadjoint extensions
of C. Observe that the selfadjoint extensions of C' are exactly those of Aj.

Recall that U(2) is the set of all unitary 2 x 2 matrices.

Proposition 2. The defect indices ny(C) and n_(C) of C are such that n, (C) =
n_(C) = 2. Hence all selfadjoint extensions of C' are two-dimensional restrictions of C*.
There is a bijection from U(2) to the set of all selfadjoint extensions of C' given as follows:
for every K = (kim)i 1 € U(2), the operator

CKf:Q[Lﬁ

0= (1 —Fku)f(=0) +i(1 + k1) f'(—=0)

(—
+ ik1o f(40) — ko f'(+0),
D(Cx)={/eDC) f( 0) + iy F(_0) (32)

)
(L + ka2) f(+0) + (1 = ka2) f'(+0)
is a selfadjoint extension of C'. There are no other selfadjoint extensions and Cx = Cg if
and only if K = K.
For a parametrization of the selfadjoint extensions with four real parameters, see the
corollary after the proof of this proposition.

Proof. From Lemma 2 we know that n, (AT") =n_(AT") =1, so
dim (ker(AT* — 1)) = dim (ker(AT™ +1)) = 1.

Hence there are functions 1+ # 0 such that ker(AT* — i) = span{¢+}. From Remark 3
we have 1 € ker(Aj —1) if and only if n|g, € ker(A}** —1i). Therefore (compare with (28))

ker(Aj — 1) = span{X(—co,0)¥—: X(0,400)V+}

and ny(A}) = 2. Analogously n_(A§) = 2 can be shown.
Now let us determine all selfadjoint extensions of Ay which is equivalent to determine
all selfadjoint restrictions of Aj. Again we apply integration by parts and find

(f, Abg) — (Aot 9) = f(+0)g'(+0) = f'(+0)g(+0) — f(=0)g'(=0) + f'(—0)g(-0)

for all f,g € D(A]).
Hence f,g belong to a particular selfadjoint extension of Ay if and only if
(F(=0), F(=0), f(+0). F/(+0))' and (g(=0), ¢'(=0), g(+0), ¢'(+0))' belong to a maximal
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neutral subspace of (C%,[-, -]) where
) Y1 0 -1 0 O T Y1
| (w|l /i 0 0 of[w]| [w®
3| | s o 0 0 0 1 z3 | | ys
Ty Ya 0O 0 -1 0 Ty Y4

= i(217y — 22Y; — X3y, + T4Y3).

Every maximal neutral subspace has dimension 2. Let

1 1
v =—(1,1,0,0)", wvy=—(0,0,1i, 1),
1 \/Q( ) 2 \/5( )
1 1
w:_17_17070t7w:_0707_i7lt'
1 \/5( ) 2 \/5( )
Then L, = span{vy, vo} is a maximal positive and L_ = span{w;, we} is a maximal
negative subspace of (C?, [-,-]) and all maximal neutral subspaces are of the form

Lx={v+Kv:vel,}={w+Kw:welL W={w-Kw:weL_}*

where K is a unitary operator from L, to L_ and [L] denotes the orthogonal complement
with respect to the inner product [-, -]. With respect to the basis vectors vy, vg, wq, wy, K
can be written as quadratic matrix

ki ke
K = 33
(km k’22> (33)

with kj;, € C (for the form of these numbers see the corollary after this proof). With
respect to the standard unit vectors ey, s, e3, e, in C*, the space Ly can be written as

14 k1p k1o
B i(l — k:n) —ikq
Ly = span “ikey | i1 = ko)
ka1 1+ koo
_ — 1
. —1(1 —+ ]{?11) —ikﬁ21
= | span _i_E12 | Sia +_E22) (34)
—k12 1 — koo

where K = (k;;)7,—; as in (33). From (34) it follows that every selfadjoint extension of C
is given by (32).

O

It is well-known that U(2) is parameterized by four real parameters ¢, a, f1, B2 € R:

Every K € U(2) is given by

L (ePrging e P2 cosa
K=¢9(" . 35
eP2 cosar —e P gina ( )

for fixed ¢, a, By, Ba.
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Therefore the boundary conditions in (32) can be rewritten as follows:

Corollary 2. Let K € U(2) be as in (35). Then f € D(Ck) if and only if f € D(C*)

and [ satisfies the boundary conditions

0= (1-— e el sin a) f(=0) +i(1+ e?el™ sin a) f'(-0)
+ iel?e=182 o5 oy f(+0) _ %6182 co5 oy f’(—l-O),
- o (36)
0— _el¢elﬁ2 CcOS (v f(_o) + iel¢el/32 COS (v f’(_O)

+i(1 — e?e P sina) f(+0) + (14 e P sina) f/(40).

In the following subsections we discuss particular choices of K.

3.1. Classical Harmonic Oscillator
0 -1
-1 0
boundary conditions (32) reduce to

Let K = ( ) For instance, we can choose a = 31 = 5o =0, ¢ = m. Then the

f(=0) = f(+0) and f(=0) = f'(+0).
Hence Cx = A 1s the classical harmonic oscillator.

3.2. Boundary Conditions such that C'x = By
Let f1 =02 =0,a€ (0,7), » =+ n/2. Then

K — el sina  cosa
cosa —sina /)’

and the boundary conditions (36) become

0= (1—ie“sina) f(=0) +i(1+iesina) f'(—0)
— e cosa(f(—l—()) + if’(—l—O)),

(37)
0= —iel cosa(f(—()) — if’(—O))
+i(1—iesina) f(+0) + (1 +ie"sina) f/(+0),
which, for o # 7/2 is true if and only if
F(=0) = F(+0) = f(0) and  f/(~0) — [/(+0) = 2tana f(0). (39)

Choose 6 € [0,7) such that cotd = —v/2tana. Then Cx = By with K as above. For
a = /2, the conditions (37) are equivalent to f(+0) = f(—0) = 0.
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3.3. Boundary Conditions with Continuous Derivative

Let o € (0,7) and let f; = B2 = 0, ¢ = 7/2 — a.. Note that €' = ie™'® and

K — a0 sina  cosa
cosa —sina

Then equations (36) become
0=ecosa f(—0)+i(1+ie"“sina) f'(-0)
— e cos a( f(+0) +1 f’(+0))
(39)
0= —c i cosoz(i F(=0) + f’(—O))
+ie ¥ cosa f(+0) + (1 +ie"*sina) f'(+0).
If o # 7/2, then (39) is equivalent to
f'(=0) = f/(+0) =: f'(0) and f(+0) — f(-0) = —2tana f'(0). (40)
If @« = /2, then (39) is equivalent to f'(—0) = f'(+0) = 0.

4. Interpretation of Some Extensions Via /- and §'-Type
Interactions

Observe that the operator A from (3) is closed. Hence the set H, := D(A) becomes a
Hilbert space with the norm
1Al = 1= (LI + IAFIP)> f € Hy
Let Hy := Lo(R). In addition to the usual norm on H, define

Ifll- = sup{[{f, g} : g € Hy,|lgll+ <1}, f € Ho,

and we define H_ to be the closure of Hy with respect to the norm |[|-||—. Then (H_, ||-||-)
is a Hilbert space and it can be viewed as the dual space of H,. Observe that we have the
continuous inclusions

H. CHy,CH_.

On says that Hy is rigged by H, and H_, see, for instance, [2], Chapter 14.
If T: H. — Hy is a bounded linear operator, then define its adjoint operator 7™ :
Hy — H_ as the unique bounded linear operator that satisfies

(Tf,g)=(fT"g), feHy, ge H,

where (-, ) denotes the inner product on H,.
Let us define the functions

o(t,0),  ift>0, v(t,0), ift >0,
w (t) = . wy(t) = .
v(—t,0), ift<0, —v(—t,0), ift<0,
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with v as in (25). Clearly wy,ws € Hy C H_. Observe that

w1(+0) = wl(—O) = w2(+0) = —ZUQ(—O) =
and  w)(+0) = —w}(—0) = wy(+0) = whH(—0) =

Lemma 7. The linear functionals

§:H, - C, 6&f=f(0),
5 H,—C, &f=Ff(0)

are bounded and

5f = g(Afw), §f= s (Afw),  feH.

1
2G(0)
Proof. Note that for any f € H, = D(A) and j = 1,2, using integration by parts twice,

we have

—+00

(Af,w;) = / (AF)(1) - w;(t) dt

—00

0 +o0

- / (=1 (6) + 2 F(O)wy () dt + / (=1 () + £ () (1) dt

0
=/f w! (t) + tw;(t)) dt +/f wf(t) + t*w;(t)) dt

FO){w;(+0) — w;(=0)} + f(O){w}(—O) —wi(+0)}
= [1(0){w;(+0) — w;(=0)} + f(0){wj(—0) — wj(+0)},
so the second claim follows from (41). Now the boundedness of § and ¢’ is clear, since

61 = I5(Af, wi)| < 5llAfIHwill < 5l fll+llwi]l, and analogously [6"f] < ses £ ll+ 1wl

O
Recall that in our case, H, C D(Af) C Hy C H_. By definition of H,, the operator

A:H. — H,  Af=Af

is bounded. Let us calculate how A* acts on elements g € D(Af). As in the proof of
Lemma 7, integration by parts gives for f € H

(Af,9) = ((+0) ~ 3(~0)} F(0) + {7/(~0) ~ F(+0)} £(0) + {1, Azg)
= {5(+0) = (=0} gz (AF 1) + {7(=0) =7 (~0)} 5 (Af. ) + (1. 4ig)

= (9(+0) = 9(-0)} g U, A} +{5/(=0) — F(+0)} 3 (F, L) + {1, ).

(0)
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So by Lemma 7, we obtain

o F0) - 7(-0) -,
A9=""Gm At 2

or, if we identify H_ and (H,)',
A7g = {g(+0) = g(=0)}0" — {g'(+0) — g'(~0)}0 + Ajg € (H,)"
Hence A{ can be seen as a perturbation of A
Ajg = A%g = {g(+0) = g(=0)}0" + {g'(+0) — g (=0)}6 € (H.) (43)

for g € D(A). Recall that the operators By from Section 2 and Ck from Section 3 satisfy
B C By C Af and C C Cx C Aj. So we obtain the following:

e Any function g € D(Ck) with K as in Subsection 3.1 satisfies g(—0) = ¢g(40) and
g'(—0) = ¢'(+0), hence
Crg=A"g=A}g.

e Any function g € D(Ck) with K as in Subsection 3.2 and « # /2 satisfies g(—0) =
g(+0) and ¢'(—0) — ¢'(+0) = 2tan« ¢(0), hence

Ckg=Ajg = A*g — 2tan o g(0)0.
If we take 6 such that cot @ = —v/2tan a, we obtain
Bpg = Crg = v2cot 8 g(0) + A*g.

Note that By has exactly one negative eigenvalue if 6 € (7/2 + a4, ) and this
eigenvalue decreases monotonically to —oo as @ — , that is v/2cot(f) — —oo.

e Any function g € D(Ck) with K as in Subsection 3.3 satisfies ¢'(—0) = ¢/(+0) and
g(+0) — g(—=0) = —2tan ¢’(0). Hence, for a # /2

Crg = Alg = A*g + 2tana ¢'(0)d'.

5. Closing Remarks

The 3-dimensional point potential for the Schrédinger operator was considered by
Zeldovich [16] and Berezin and Faddeev [3]. The free Schrédinger operator with 1-
dimensional singular potential at 0 was investigated by Seba in [11] and then later
by Kurasov in [10]. Both use von Neumann’s extension theory to obtain selfadjoint
extensions of a given differential operator on R\ {0} and interpret their results in terms
of 0- and ¢'-interactions at 0. See [1] for more information on this direction. The 1-
dimensional harmonic oscillator with d-interaction at the origin was considered for instance
by Gadella, Glasser and Nieto in [7] and Viana-Gomes and Peres in [13]. In both works
the eigenfuntions are calculated in terms of confluent hypergeometric functions. Moreover,
it is shown that the eigenvalues with odd eigenfunctions are not changed, whereas the
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eigenvalues with even eigenfunctions increase (for ¢ > 0) or decrease (for ¢ < 0) when
compared with the eigenvalues of the harmonic oscillator without singular perturbation.
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OJTHOMEPHBII TAPMOHNYECKUN OCIINJIATOP
C CUHI'YJISIPHBIM BO3MVYIIIEHUEM

B.A. III'mpayc, M.A. Bunxavmatiep

B nacrosmeit pabore uccmeyercst OMHOMEPHBIH BO3MYITIEHHbBIH TAPMOHUIECKUH OCIHII-
JIATOP C JIEBO-IIPABOCTOPOHHUMU TI'DAHUYHBIMU YCIOBHUSAMHU B Hyjle. Ha paccmarpuBaeMblit
00BEKT MOXKHO CMOTPETH KaK Ha KJIACCHICCKHH CAMOCOIPSIKEHHbII TrapMOHUIECKUN OCITHII-
JIATOP C CUHTYJISIPHBIM BO3MYIIEHHEM, COCPEIOTOYCHHBIM B OJHOM TOYKE. Y KA3aHHOE BO3MY-
IIeHHe TOPOXK aaeTcs nesbra-dbyHkuumeit Jupaka n/unnm ee mponspoauoii. OnuchBaOTCH BCe
CaMOCOILPS2KEHHBIE PeaJIU3alliyl ITOM CXeMbl B TEPMUHAX YKA3AHHbBIX IPAHHMYHBIX yCJIOBUM.
IMToka3zbiBaeTcsi, 9TO NPU HEKOTOPBIX OIPAHUYEHUSX HA BO3MYIIEHUE (MM, 9TO IKBUBAJIEHT-
HO, HA IPAHUYHBIE YCIOBUs) Y COOTBETCTBYIOMETO AudHepeHmansbsHOr0 onepaTopa MOyKer
[IOSIBUTBCS POBHO OJHO HEMNOJIOKHUTENbHOE COOCTBEHHOE 3HAYEHHEe, W IPUBOIUTCI AHAJIU-
TUYECKOE BHIPAXKEHUE JJIsI COOTBETCTBYIONIEH CODCTBEHHOM (DYHKIMU. Y Ka3aHHOe COOCTBEH-
HOEe 3HaueHue IpoberaeT BCI HEOTPHIATENBHYIO IIOIYOCh KOIa KO3(hPUIMEHT BO3MY LIEHUS
npoberaeT yCTaHOBJIEHHBIM MPOMEXKYTOK. /1 HEKOTOPBIX CJIYYaeB IMPUBOAUTCS HEIOCPET-
CTBEHHAs 3aBUCHMOCTb MEXKAY HOAXOAANIMMA IPAHNIHBIME YCIOBUSIMHI, COOTBETCTBY FOLIUM
HEOTPHUIATETHLHBIM COOCTBEHHBIM 3HAYEHUEM U €r0 COOCTBEHHOM (DbyHKIMEH.

Karouesvie ca06a:; 20pMOHUNECKUT OCUUAAATIOD; CUHYAAPHBIE B03MYUEHUS; CAMOCO-
NPAHCEHHBLE PACULUPEHUA; OMPUUGITENLHBIE COOCTNGEHHDIE 3HAMEHUS.
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