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ON THE ONE-DIMENSIONAL HARMONIC OSCILLATOR
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In this paper we investigate the one-dimensional harmonic oscillator with a left-

right boundary condition at zero. This object can be considered as the classical

selfadjoint harmonic oscillator with a singular perturbation concentrated at one point.

The perturbation involves the delta-function and/or its derivative. We describe all

possible selfadjoint realizations of this scheme in terms of the above mentioned boundary

conditions. We show that for certain conditions on the perturbation (or, equivalently, on

the boundary conditions) exactly one non-positive eigenvalue can arise and we derive an

analytic expression for the corresponding eigenfunction. These eigenvalues run through

the whole negative semi-line as the perturbation becomes stronger. For certain cases an

explicit relation between suitable boundary conditions, the non-positive eigenvalue and the

corresponding eigenfunction is given.

Keywords: harmonic oscillator; singular perturbation; selfadjoint extensions; negative

eigenvalues.

Introduction

In this paper, we use the following notations. Set R+ = (0,∞) and R− := (−∞, 0) and
for functions f : R → C de�ne their restrictions f± := f |R± . The standard inner products
on L2(R) and on Cn are both denoted by ⟨·, ·⟩. There will never be danger of confusion.
Given a sesquilinear form [ · , · ] on Cn, we call a subspace L neutral if [u, v] = 0 for every
u, v ∈ L. A subspace L is called maximal neutral if it is neutral and not properly contained
in any other neutral subspace (see [8] for details).

The one-dimensional harmonic oscillator is given by the formal di�erential expression

Af(t) :=

(
−1

2

d2

dt2
+

1

2
t2
)
f(t).

The aim of this paper is to investigate several possible realisations of A as a symmetric
linear operator and determine all possible selfadjoint extensions.

By the Liouville � Green asymptotic formula [5, Theorem 2.2.1], it is known that there
are solutions y± of Ay = λy with the following asymptotic behaviour for |t| → ∞:

y±(t) ∼
1

(t2 − 2λ)
1
4

exp
(
±

t∫
a

√
s2 − 2λ+

1

4

( s

s2 − 2λ

)2

ds
)

(1)

for |a| large enough. This shows immediately that A is in the limit point case both at +∞
and −∞.
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In order to assign an operator to the di�erential expression A, we need to specify a
domain of admissible functions. The minimal operator associated with A is

Aminf = Af, D(Amin) = C∞
c (R). (2)

Since A is in the limit point case both at +∞ and −∞, the operator Amin is essentially
selfadjoint (see, e.g. [12, 7.1.3]). Its closure is the so-called maximal operator associated to
A:

Af = Af, D(A) = {f : R → C : f, f ′ abs. cont., f, Af ∈ L2(R)}. (3)

Note that
Amin ⊂ Amin = A = A∗.

It is well known that A has a compact resolvent, and that its spectrum consists of simple
eigenvalues:

σ(A) = σp(A) =
{
n+

1

2
: n ∈ N0

}
. (4)

The corresponding eigenfunctions are

ψn(t) = e−t2/2cnHn(t)

where Hn is the nth Hermite polynomial of order n,

Hn(t) = (−1)net
2 dn

dtn
e−t2 ,

and the normalization factor cn := (π
1
22nn!)−

1
2 is chosen such that ⟨ψn, ψm⟩ = δnm.

Remark 1. A straightforward calculation shows that if u is a solution of (A+λ)u = 0, then(
t− d

dt

)n
u is a solution of (A+λ−n)u = 0 and

(
t+ d

dt

)n
u is a solution of (A+λ+n)u = 0.

In particular, all eigenfunctions of A can be obtained by the recursion

ψ0(t) = π− 1
2 e−t2/2, ψn(t) = cn

(
t− d

dt

)n

e−t2/2, n ≥ 1. (5)

Note that
(

d
dt
+ t

)n
ψ0 = 0, in agreement with the fact that A has no negative eigenvalues.

From the recursion formula (5) it is clear that ψn is an even function if n is even, and
that it is an odd function, if n is odd.

In Section 1 we consider the restriction of the harmonic oscillator to the open half
lines R±:

Amin
± f(t) := Af(t), D(Amin

± ) := C∞
c (R±), (6)

Amax
± f(t) := Af(t), D(Amax

± ) :=

{
f : R± → C :

f, f ′ abs. cont.,

Af |R± ∈ L2(R±)

}
. (7)

With them we de�ne
A0 = Amin

− ⊕ Amin
+ . (8)

Clearly, D(A∗
0) = D(Amax

− )⊕D(Amax
+ ).
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In Sections 2 and 3 we will study several restrictions of the operator A by imposing
conditions on functions in its domain at t = 0. We de�ne the closed symmetric operators

Bf := Af, D(B) := {f ∈ D(A) : f(0) = 0}, (9)

Cf := Af, D(C) := {f ∈ D(A) : f(0) = f ′(0) = 0}. (10)

So we have the following chain of operators

A0 ⊂ A0 = C ⊂ B ⊂ A = A∗ ⊂ B∗ ⊂ C∗ = A∗
0.

With exception of the �rst one, all inclusions are one-dimensional. We will classify all
selfadjoint extensions of B (Section 2) and C (Section 3) in terms of conditions on the
behaviour at 0 of the functions in the corresponding domains. Slightly abusing language,
we will call these conditions boundary conditions at 0. We will not use the von Neumann
extension theory for symmetric operators, but will identify selfadjoint extensions with
maximal neutral subspaces of C2, C3 and C4, respectively, equipped with an inner product
induced by the condition ⟨Af, g⟩ = ⟨f, Ag⟩ for f, g in appropriate spaces.

In particular, it turns out that the selfadjoint extensions of B can be parameterized
by one real parameter. Every selfadjoint extension is of the form

D(Bθ) =
{
f ∈ D(B∗) :

√
2 cos(θ) f(0) = sin(θ)

[
f ′(+0)− f ′(−0)

]}
(11)

for θ ∈ [0, π). Any function of D(Bθ) is continuous at 0 (Lemma 4), but its derivative has a
jump proportional to the value of the function at 0. There is a one-to-one correspondence
between the constant of proportionality and the particular selfadjoint extension. The
operators Bθ can also be interpreted as the classical harmonic oscillator with a δ-interaction
at 0 on a bigger Hilbert space, see Section 4:

Bθf =

(
−1

2

d2

dt2
+

1

2
t2 + cδ

)
f(t),

with c = cot θ√
2
. There is a constant γ > 0 such that if c > −γ, then Bθ has only positive

eigenvalues, if c = −γ, then 0 is an eigenvalue of Bθ, and if c < γ, then Bθ has exactly one
negative eigenvalue. This eigenvalue decreases monotonically to −∞ as c tends to −∞, or
equivalently, θ tends to π.

Finally, in Section 4 we give an interpretation of the operators Bθ and another
selfadjoint extension denoted by CK as operators with a δ- and δ′-interaction at 0 in
a Hilbert space H− ⊃ L2(R). Some bibliographical notes are given in Section 5.

1. The Harmonic Oscillator on the Half Line

First we restrict the harmonic oscillator to the half lines R±. The corresponding
minimal operators are given in (6). These operators are in the limit point case at
±∞ and in the limit circle case at 0, hence they are not essentially selfadjoint. Their
adjoint operators are the ones in (7). Note that for f ∈ D(Amax

+ ) the one-sided limits
f(+0) := lim

t→0+
f(t) and f ′(+0) := lim

t→0+
f ′(t) exist. Similarly, for f ∈ D(Amax

− ) the one-

sided limits f(−0) := lim
t→0−

f(t) and f ′(−0) := lim
t→0−

f ′(t) exist.
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All selfadjoint extensions of Amin
± are given as restrictions of Amax

± by appropriate
boundary conditions at 0. In Lemma 2 we will show that exactly one boundary condition
is needed.

Recall that the defect index of a closed densely de�ned linear operator T with respect
to z ∈ ρ(T ) is given by

n(T, z) := dim (ker(T ∗ − z)).

It is well known that the defect indices are constant in the complement of the numerical

range

W (T ) := {⟨Tx, x⟩ : x ∈ D(T ), ∥x∥ = 1},

see, e.g., [9, Ch. V, Theorem 3.2]. It is easy to see thatW (T ) ⊂ R for a symmetric operator
T . Hence its defect indices are constant in the upper and lower complex plane. Denote
them by

n+(T ) = dim (ker(T ∗ − z+)), n−(T ) = dim (ker(T ∗ − z−)),

for any z± ∈ C with Im(z±) ∈ R±. By the von Neumann theory, a symmetric operator
has selfadjoint extensions if and only if its defect indices are equal (see for instance [14,
Ch. 8.2]).

Lemma 1. The defect indices of Amin
± are n+(A

min
± ) = n−(A

min
± ) = 1 and

W (Amin
± ) ⊆ R+. (12)

Proof. We show the lemma only for Amin
+ . For all f ∈ D(Amin

+ ), integration by parts yields

⟨Amin
+ f, f⟩ = −f ′(x)f(x)

∣∣∣∞
0
+

∞∫
0

|f ′|2 + x2|f |2 dx =

∞∫
0

|f ′|2 + x2|f |2 dx > 0

which shows (12). Hence the defect index of Amin
+ is constant in C \ R+.

It can be easily veri�ed that two pairs of independent solutions of (A+ 1
2
)f = 0 are

ϕ1(t) = e
1
2
t2 , ϕ+(t) = e

1
2
t2

∞∫
t

e−s2 ds, (13)

ϕ1(t) = e
1
2
t2 , ϕ−(t) = e

1
2
t2

t∫
−∞

e−s2 ds = ϕ+(−t). (14)

Observe that ϕ+ + ϕ− =
√
π ϕ1. Clearly ϕ1|R+ /∈ L2(R+), but ϕ+|R+ ∈ L2(R+). Therefore

ker(Amax
+ + 1

2
) = span{ϕ+|R+} and n+(A

min
+ ) = n−(A

min
+ ) = 1.

Analogous calculations show that ⟨Amin
− f, f⟩ ≥ 0 for all f ∈ D(Amin

− ), ϕ1|R− /∈ L2(R−),
ϕ−|R− ∈ L2(R−), thus ker(A

max
− + 1

2
) = span{ϕ−|R−} and n+(A

min
− ) = n−(A

min
− ) = 1.

2
The following result on selfadjoint extensions of Amin

± follows easily from the general
theory of Sturm � Liouville operators. For the convenience of the reader, we present it
here with a proof in order to illustrate the method of inde�nite inner product spaces for
the description of selfadjoint extensions.
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Lemma 2. All selfadjoint extensions of Amin
± are one-dimensional; they are restrictions

of Amax
± of the form

D(A±,θ) =
{
f ∈ D(Amax

± ) : cos(θ)f±(+0) = sin(θ)f ′
±(+0)

}
(15)

with θ ∈ [0, π).

Proof. We show the claim only for Amin
+ since the corresponding assertions for Amin

− follow
analogously.
By Lemma 1, the defect index of Amin

± is equal to 1 on C\R+. Two functions f, g ∈ D(Amax
+ )

belong to a particular selfadjoint extension of Amin
+ if and only if ⟨Amax

+ f, g⟩−⟨Amax
+ f, g⟩ =

0. Integration by parts leads to the condition

0 = ⟨Amax
+ f, g⟩ − ⟨Amax

+ f, g⟩ = f(+0)g′(+0)− f ′(+0)g(+0). (16)

On C2 let us de�ne the Hermitian inner product[(
x1
x2

)
,

(
y1
y2

)]
=

⟨(
0 −i
i 0

)(
x1
x2

)
,

(
y1
y2

)⟩
= i(x2y1 − x1y2).

Then f, g belong to a particular selfadjoint extension of Amin
+ if and only if (f(+0), f ′(+0))t

and (g(+0), g′(+0))t belong to the same maximal neutral subspace of (C2, [·, ·]). Clearly
e+ = (1, i)t is a positive and e− = (−1, i)t is a negative vector and ∥e+∥ = ∥e−∥. Hence
all maximal neutral subspaces are given by

Lθ = span

{(
1− e−2iθ

i(1 + e−2iθ)

)}
=

(
span

{(
1 + e−2iθ

i(1− e−2iθ)

)})⊥

, θ ∈ [0, π).

Therefore all selfadjoint extensions of Amin
+ are given by

D(A+,θ) =

{
f ∈ D(Amax

+ ) :

(
f(+0)
f ′(+0)

)
∈ Lθ

}
=

{
f ∈ D(Amax

+ ) : f(+0)(1 + e−2iθ) = −if ′(+0)(1− e−2iθ)
}

with θ ∈ [0, π). The last description yields (15).

2
Remark 2. Let f ∈ L2(R+) and g ∈ L2(R−) such that g(x) = f(−x) for x ∈ R−. From
formula (15) it is clear that f ∈ D(A+,θ) for some θ ∈ (0, π) if and only if g ∈ D(A−,π−θ)
and f ∈ D(A+,0) if and only if g ∈ D(A−,0).

Recall that {ψn : n ∈ N}, the set of eigenfunctions of the harmonic oscillator on R
(see (5)), is an orthonormal basis of L2(R). Denote

ψn,+ = ψn|R+ , ψn,− = ψn|R− , n ∈ N0. (17)

Clearly both {ψ2n,± : n ∈ N0} and {ψ2n+1,± : n ∈ N0} form a complete orthogonal systems
on R±. With these observations we can calculate the spectrum of the operators A±,θ for
θ = 0 and θ = π

2
.

Corollary 1. Let A±,θ be as in (15).
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1. σ(A±,0) = σp(A±,0) = {2n + 3
2
: n ∈ N0} and the corresponding eigenfunctions are

ψ2n+1,±, n ∈ N0.

2. σ(A±,π
2
) = σp(A±,π

2
) = {2n + 1

2
: n ∈ N0} and the corresponding eigenfunctions are

ψ2n,±, n ∈ N0.

Proof. We will prove the claim only for A+,0. All other statements are proved analogously.
Since all ψ2n+1 are odd functions, it follows that ψ2n+1(0) = 0 and therefore their
restrictions ψ2n+1,+ belong to D(A+,0). Moreover, A+,0ψ2n+1,+ = (2n + 3

2
)ψ2n+1,+, hence

{2n+ 3
2
: n ∈ N0} ⊂ σp(A±,0). Now the claim follows from the completeness of the system

{ψ2n+1,+} in L2(R+).

2
From the asymptotic expansion (1) of solutions of the equation Ay = λy it is clear that

for every λ ∈ R there is exactly one solution yλ which is square integrable on R+. It belongs
to the domain of exactly one selfadjoint extension A+,θ, namely the one with θ ∈ [0, π)
such that cos θ yλ(0) = sin θ y′λ(0). The expansion (1) also shows that all eigenvalues are
simple.

Since W (Amin
± ) ⊆ (0,∞), the non-positive spectrum σ(Aθ)∩ (−∞, 0] of any selfadjoint

extension Aθ consists of at most one eigenvalue of multiplicity at most 1, see [14, Ch. 8.4,
Cor. 2]. The lemma below deals with these eigenvalues, but as a �rst step we need to de�ne
some functions.

Let ω ≥ 0. On [0,∞) consider the Cauchy problem(
−1

2

d2

dt2
+

1

2
t2
)
u(t, ω) = −ω2u(t, ω), (18)

u(0, ω) = 1, u′t(0, ω) = 0. (19)

Let us write u(t, ω) as power series

u(t, ω) =
∞∑
n=0

an(ω)t
n. (20)

Replacing (20) in (18) we obtain a2n+1(ω) = 0 and

a0(ω) = 1, a2(ω) = ω2

a2n+2(ω) =
1

(2n+ 2)(2n+ 1)
(2ω2a2n(ω) + a2n−2(ω)), n ≥ 1.

(21)

Let us show that the series converges for all t > 0. To this end we will show that for every
ω ≥ 0 there is a constant q(ω) such that

a2n(ω) ≤
q(ω)

n!
, n ∈ N. (22)

Assume that this inequality is true for numbers n− 1 and n. Then, due to (21), we have

a2n+2 ≤
1

(2n+ 2)(2n+ 1)

(
2ω2q(ω)

n!
+

q(ω)

(n− 1)!

)
=

q(ω)

(n+ 1)!

(
ω2

2n+ 1
+

n

2(2n+ 1)

)
.
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Since ω2

2n+1
+ n

2(2n+1)
→ 1

4
for n → ∞, there is a natural number n0(ω) such that ω2

2n+1
+

n
2(2n+1)

< 1 for every n ≥ n0(ω). Thus, (22) holds if we take

q(ω) = max{1, 2! · a2(ω), . . . , n0! · a2n0(ω)}.

Due to (22) the series (20) converges and u(t, ω) ≤ q(ω) et
2
for ω ≥ 0, t > 0.

Note that all a2n(ω) are positive increasing functions of ω, so for every t > 0, u(t, ω) is
an increasing function with respect to ω and for every ω ≥ 0, u(t, ω) is a positive increasing
function with respect to t, so u(t, ω) /∈ L2(R+). For the special case ω = 0 we obtain

u(t, 0) = 1 +
∞∑
n=1

t4n∏n
k=1 4k(4k − 1)

. (23)

Due to the inequalities

1

322n(2n− 1)
<

1

4n(4n− 1)
<

1

22 2n(2n− 1)
, n ∈ N,

we have

cosh
(x2
3

)
< u(t, 0) < cosh

(x2
2

)
, t > 0. (24)

Now let us de�ne (compare with (13))

v(t, ω) := u(t, ω)

∞∫
t

(
u(s, ω)

)−2
ds (25)

and

G(ω) := v(0, ω) =

∞∫
0

(
u(s, ω)

)−2
ds. (26)

Lemma 3. Let A±,θ be as in (15) and let αA = arctan(G(0)).

1. A+,θ has the eigenvalue 0 if and only if θ = π − αA. It has a negative eigenvalue if

and only if θ ∈ (π − αA, π). Moreover, let λj be eigenvalues of A+,θj for j = 1, 2. If
λ2 < λ1 < 0, then π − αA < θ1 < θ2 < π.

2. A−,θ has the eigenvalue 0 if and only if θ = αA. It has a negative eigenvalue if

and only if θ ∈ (0, αA). Moreover, let λj be eigenvalues of A−,θj for j = 1, 2. If
λ2 < λ1 < 0, then αA > θ1 > θ2 > 0.

Proof. We proof only the item 1. The claims in the item 2 follow from the item 1 and
Remark 2. Since u(t, ω) is positive and increasing both in t and ω, it follows from (24)
that

v(t, ω) < u(t, ω)

∞∫
t

(
u(t, ω)

)−1(
u(s, ω)

)−1
ds =

∫ ∞

t

(
u(s, ω)

)−1
ds

≤
∞∫
t

(
u(s, 0)

)−1
ds <

∞∫
t

(
cosh(s2/3)

)−1
ds ∈ L2(R+).
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It is easy to check that v(·, ω) satis�es (18) and

v′t(t, ω) = − 1

u(t, ω)
+ u′(t, ω)

∞∫
t

(
u(s, ω)

)−2
ds ,

therefore, by (19), v′t(0, ω) = −1. It follows from (26) that

v′t(0, ω) = −v(0, ω)
G(ω)

(27)

which is equivalent to the boundary condition (15) with θ such that tan θ = −G(ω), that
is, θ = − arctan(G(ω)) ∈ (π/2, π). Observe that G(ω) is decreasing and continuous in ω
and lim

ω→∞
G(ω) = 0. Hence θ is increasing in ω and tends to π as ω → ∞. For the special

case ω = 0 we obtain θ = π/2− αA where αA = arctan(G(0)).

2

2. One-Dimensional Restriction of the Harmonic Oscillator
and Classi�cation of All Selfadjoint Extensions

In this section we consider the harmonic oscillator B on the real line de�ned by (9). The
operator B is closed and symmetric, but not selfadjoint. Let us recall also the de�nition
(8) of A0.

Remark 3. The domain of A0 can be viewed as D(A0) = D(Amin
− ) ⊕ D(Amin

+ ), hence it
is easy to see that its adjoint is given by

A∗
0f(t) =

{
Amax

+ f+(t), t > 0,

Amax
− f−(t), t < 0,

D(A∗
0) = {f ∈ L2(R) : f± ∈ D(Amax

± )} = D(Amax
− )⊕D(Amax

+ ).

It should be noted that A∗
0 and the selfadjoint extensions Bθ and CK of B and C

which will be calculated below are not di�erential operators on L2(R) in the classical
sense because functions in their domains need not be continuous or di�erentiable in 0.

Lemma 4. We have the chain of extensions A0 ⊂ B ⊂ B∗ ⊂ A∗
0 and

B∗f(t) = A∗
0f(t),

D(B∗) = {f : R → C : f± ∈ D(Amax
± ), f(−0) = f(+0)}.

Proof. Note that A0 ⊂ B, hence B∗ ⊂ A∗
0. Let f ∈ D(B) and g ∈ D(A∗

0). Then f and f ′

are continuous in 0, f(0) = 0 and g± ∈ D(Amax
± ). Hence integration by parts yields

⟨Bf, g⟩ − ⟨f, A∗
0g⟩ = −

0∫
−∞

f ′′g dt−
∞∫
0

f ′′g dt+

0∫
−∞

fg′′ dt+

∞∫
0

fg′′ dt

= f ′(0)
(
g(+0)− g(−0)

)
.

Therefore g ∈ D(B∗) if and only if g is continuous in 0 and in this case B∗g = A∗
0g.
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2

Note that functions in the domain of B∗ are continuous but their derivative may have
a discontinuity in 0.

Analogously to Lemma 2 we now classify all selfadjoint extensions of B.

Proposition 1. The defect indices of B are n+(B) = n−(B) = 1. Hence all selfadjoint

extensions of B are one-dimensional restrictions of B∗. They are given by (11).

Proof. Observe that B is a restriction of A, hence for the numerical ranges we have the
inclusion W (B) ⊂ W (A) ⊂ [0,∞), so the defect index of B is constant in C \ [0,∞) and
it su�ces to show that dim (ker(B∗ + 1

2
)) = 1.

The proof of Lemma 1 shows that every L2-solution of (A + 1
2
)f = 0 must be of the

form
f = α−ϕ−χ(−∞,0) + α+ϕ+χ(0,+∞) (28)

with α± ∈ C and ϕ± as in (13) and (14). Here χ(−∞,0) and χ(0,+∞) are the indicator
functions of the sets (−∞, 0) and (0,+∞) respectively. Clearly every function (28) belongs
to D(A∗

0) and f(−0) = α−
2

√
π and f(+0) = α+

2

√
π. For f ∈ D(B∗) we must have that

f(−0) = f(+0). Therefore ker
(
B∗+ 1

2

)
= span{ϕ−χ(−∞,0)+ϕ+χ(0,+∞)}. Thus n(B,−1

2
) =

1.
Let us now determine all selfadjoint extensions of B. This is equivalent to determine

all selfadjoint restrictions of B∗. Let f, g ∈ D(B∗). Performing integration by parts we �nd

⟨f,B∗g⟩ − ⟨B∗f, g⟩ =
[
f ′(−0)− f ′(+0)

]
g(0)−

[
g′(−0)− g′(+0)

]
f(0).

Set

G =

 0 −i i
i 0 0
−i 0 0

 .

Then f, g belong to a particular selfadjoint extension of B if and only if
(f(0), f ′(−0), f ′(+0))t and (g(0), g′(−0), g′(+0))t belong to a maximal neutral subspace
of (C3, [·, ·]) wherex1x2

x3

 ,

y1y2
y3

 :=

⟨
G

x1x2
x3

 ,

y1y2
y3

⟩
= i

[
x1
(
y3 − y2

)
+ y1

(
x2 − x3

)]
.

The eigenvalues of G are 0 and ±
√
2 with eigenspaces

kerG = span
{
(0, 1, 1)t

}
,

L+ := ker(G−
√
2) = span

{
(i
√
2, −1, 1)t

}
,

L− := ker(G+
√
2) = span

{
(−i

√
2, −1, 1)t

}
.

Note that L± are maximal positive and maximal negative subspaces of C3 respectively.
Hence any maximal neutral subspace of C3 has dimension 2. They are of the form kerG⊕
{v + Kv : v ∈ ker(G −

√
2)} where K is an isometry from L+ to L−. Clearly all such
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isometries are of the form v+ 7→ e−2iθv− where v± ∈ L±. In summary, all maximal neutral
subspaces are

Lθ = span


0
1
1

 ,

i
√
2

−1
1

+ e2iθ

−i
√
2

−1
1

 , θ ∈ [0, π).

This can be rewritten as

Lθ = span


0
1
1

 ,

√
2 sin(θ)

− cos(θ)
cos(θ)

 =

span


√

2 cos(θ)
sin(θ)
− sin(θ)


⊥

.

It follows that f ∈ D(Bθ) if and only if f ∈ D(B∗) and
√
2 cos θ f(0) + sin θ

[
f ′(−0)− f ′(+0)

]
= 0. (29)

2
Remark 4.

1. Observe that functions f in D(B)∗ which satisfy
{(f(0), f ′(−0), f ′(+0)} ∈ kerG belong to D(B).

2. The selfadjoint extensions of B can be divided into the following cases:

(a) θ = π
2
. In this case the boundary condition (29) is simpli�ed to

f ′(−0)− f ′(+0) = 0.

That is, f and f ′ are continuous and we obtain the classical harmonic oscillator:
Bπ/2 = A.

(b) θ = 0. In this case the boundary condition (29) is simpli�ed to f(0) = 0.

(c) θ ∈ (0, π) \ {π/2}. The boundary condition (29) can be written as

f(0) =
tan(θ)√

2

[
f ′(+0)− f ′(−0)

]
.

Hence any function in D(Bθ) is continuous but its derivative has a jump in
t = 0 which is proportional to the value of f in 0. Two di�erent selfadjoint
extensions of B have di�erent constants of proportionality.

3. For every n ∈ N0, the function ψ2n+1 from (5) is an eigenfunction of Bθ with
eigenvalue 2n+3/2. So the odd eigenvalues of the harmonic oscillator are not a�ected
by the boundary condition at 0.

An interpretation of these operators as a di�erential operator with a δ-interaction at
0 is given in Section 4..

Let λ ∈ C. By the asymptotic expansion (1) the equation Ay = λy has square
integrable solutions y± on R± which are unique up to a constant factor. Let us de�ne

y(x) =

{
y+(x), x ≥ 0,

y+(−x), x < 0.
(30)
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Then clearly y ∈ D(B∗) and it is, up to a constant factor, the unique solution of (B∗−λ)y =
0. Moreover, y ∈ D(Bθ) where θ is the unique number in [0, π) such that

√
2 cos θ f(0) =

sin θ [f ′(+0)− f ′(−0)].

This shows that, as in the case of selfadjoint extensions of A0, every λ ∈ R appears as
eigenvalue of exactly one selfadjoint extension of B and that every eigenvalue is simple.
Moreover, any given Bθ can have at most one negative eigenvalue.

As in Lemma 3 we can identify all θ such that Bθ has a negative eigenvalue.

Lemma 5. Let Bθ be as in Proposition 1 and let αB = arctan(G(0)√
2
) with G as in (26).

Then Bθ has the eigenvalue 0 if and only if θ = π − αB. It has a negative eigenvalue if

and only if θ ∈ (π − αB, π). The corresponding eigenvalue λ = −ω2 can be found via the

equality tan(θ) = −G(ω)√
2
. Moreover, let λj be eigenvalues of Bθj for j = 1, 2. If λ2 < λ1 < 0,

then π − αB < θ1 < θ2 < π.

Proof. Let λ = −ω2 < 0 and y be as in (30) with y+ = v(·, ω) (see (25)). Then y is

an eigenfunction of Bθ with eigenvalue λ if and only if tan(θ) = −G(ω)√
2
. Hence negative

eigenvalues occur if and only if θ ∈ (π − arctan(G(0)√
2
), π). Since G is decreasing in ω with

limω→∞G(ω) = 0, also the last claim follows.

2
For λ ∈ −(2N − 1

2
) we can calculate the corresponding eigenfunctions by a recursion

formula.

Lemma 6. Let n ∈ N and ϕ± be as in (13) and (14). Set ϕ±,n(t) :=
(

d
dt
+ t

)n
ϕ±(t) for

t ∈ R± and

un(t) :=

ϕ+,n(t), t > 0,

ϕ−,n(t), t < 0.

Then u2n ∈ D(B∗). That is, u2n de�nes a selfadjoint extension Bθ of B and it is an

eigenfunction of Bθ with eigenvalue −2n− 1
2
.

Proof. Clearly un ∈ D(Amax
0 ). It is easy to check that ϕ+(t) = ϕ−(−t) for t > 0. Moreover,

a straightforward calculation shows(
A+ n+

1

2

)
ϕ±,n = 0.

Hence ϕ+,n(t) = (−1)nϕ−,n(−t) for t > 0. So u2n is continuous in 0, and therefore it belongs
to D(B∗). If in addition we had u′2n(−0) = u′2n(+0), then u2n ∈ D(A), and −2n− 1

2
would

be an eigenvalue of A, in contradiction to (4).

2

3. Two-Dimensional Restriction of the Harmonic Oscillator
and Classi�cation of Its Selfadjoint Extensions

Let us further restrict the harmonic oscillator on the real line. We consider the following
restriction C of the selfadjoint operator A:

Cf := Af, D(C) := {f ∈ D(A) : f(0) = f ′(0) = 0}.
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The operator C is closed and symmetric, but not selfadjoint. It is easy to see that

C∗ = A∗
0.

The operator C is closely related to the harmonic oscillator on the half lines R± because

C = (C∗)∗ = (A∗
0)

∗ = A0 = Amin
− ⊕ Amin

+ . (31)

Analogously to Lemma 2 and Proposition 1 we now classify all selfadjoint extensions
of C. Observe that the selfadjoint extensions of C are exactly those of A0.

Recall that U(2) is the set of all unitary 2× 2 matrices.

Proposition 2. The defect indices n+(C) and n−(C) of C are such that n+(C) =
n−(C) = 2. Hence all selfadjoint extensions of C are two-dimensional restrictions of C∗.

There is a bijection from U(2) to the set of all selfadjoint extensions of C given as follows:

for every K = (klm)
2
l,m=1 ∈ U(2), the operator

CKf = Af,

D(CK) =

f ∈ D(C∗) :

0 = (1− k11)f(−0) + i(1 + k11)f
′(−0)

+ ik12f(+0)− k12f
′(+0),

0 = −k21f(−0) + ik21f
′(−0)

+ i(1 + k22)f(+0) + (1− k22)f
′(+0)

 (32)

is a selfadjoint extension of C. There are no other selfadjoint extensions and CK = CK̃ if

and only if K = K̃.

For a parametrization of the selfadjoint extensions with four real parameters, see the
corollary after the proof of this proposition.

Proof. From Lemma 2 we know that n+(A
min
± ) = n−(A

min
± ) = 1, so

dim (ker(Amax
± − i)) = dim (ker(Amax

± + i)) = 1.

Hence there are functions ψ± ̸= 0 such that ker(Amax
± − i) = span{ψ±}. From Remark 3

we have η ∈ ker(A∗
0− i) if and only if η|R± ∈ ker(Amax

± − i). Therefore (compare with (28))

ker(A∗
0 − i) = span{χ(−∞,0)ψ−, χ(0,+∞)ψ+}

and n+(A
∗
0) = 2. Analogously n−(A

∗
0) = 2 can be shown.

Now let us determine all selfadjoint extensions of A0 which is equivalent to determine
all selfadjoint restrictions of A∗

0. Again we apply integration by parts and �nd

⟨f, A∗
0g⟩ − ⟨A∗

0f, g⟩ = f(+0)g′(+0)− f ′(+0)g(+0)− f(−0)g′(−0) + f ′(−0)g(−0)

for all f, g ∈ D(A∗
0).

Hence f, g belong to a particular selfadjoint extension of A0 if and only if
(f(−0), f ′(−0), f(+0), f ′(+0))t and (g(−0), g′(−0), g(+0), g′(+0))t belong to a maximal
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neutral subspace of (C4, [·, ·]) where

x1
x2
x3
x4

 ,


y1
y2
y3
y4


 :=

⟨
0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0



x1
x2
x3
x4

 ,


y1
y2
y3
y4


⟩

= i(x1y2 − x2y1 − x3y4 + x4y3).

Every maximal neutral subspace has dimension 2. Let

v1 =
1√
2
(1, i, 0, 0)t, v2 =

1√
2
(0, 0, i, 1)t,

w1 =
1√
2
(1, −i, 0, 0)t, w2 =

1√
2
(0, 0, −i, 1)t.

Then L+ = span{v1, v2} is a maximal positive and L− = span{w1, w2} is a maximal
negative subspace of (C4, [·, ·]) and all maximal neutral subspaces are of the form

LK = {v +Kv : v ∈ L+} = {w +K∗w : w ∈ L−}[⊥] = {w −K∗w : w ∈ L−}⊥

where K is a unitary operator from L+ to L− and [⊥] denotes the orthogonal complement
with respect to the inner product [ · , · ]. With respect to the basis vectors v1, v2, w1, w2, K
can be written as quadratic matrix

K =

(
k11 k12
k21 k22

)
(33)

with kjk ∈ C (for the form of these numbers see the corollary after this proof). With
respect to the standard unit vectors e1, e2, e3, e4 in C4, the space LK can be written as

LK = span




1 + k11
i(1− k11)
−ik21
k21

 ,


k12

−ik12
i(1− k22)
1 + k22




=

span




1− k11
−i(1 + k11)

−ik12
−k12

 ,


−k21
−ik21

−i(1 + k22)

1− k22





⊥

(34)

where K = (kij)
2
ij=1 as in (33). From (34) it follows that every selfadjoint extension of C

is given by (32).

2
It is well-known that U(2) is parameterized by four real parameters ϕ, α, β1, β2 ∈ R:

Every K ∈ U(2) is given by

K = eiϕ
(
eiβ1 sinα e−iβ2 cosα
eiβ2 cosα −e−iβ1 sinα

)
(35)

for �xed ϕ, α, β1, β2.
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Therefore the boundary conditions in (32) can be rewritten as follows:

Corollary 2. Let K ∈ U(2) be as in (35). Then f ∈ D(CK) if and only if f ∈ D(C∗)
and f satis�es the boundary conditions

0 = (1− eiϕeiβ1 sinα) f(−0) + i(1 + eiϕeiβ1 sinα) f ′(−0)

+ ieiϕe−iβ2 cosα f(+0) − eiϕe−iβ2 cosα f ′(+0),

0 = −eiϕeiβ2 cosα f(−0) + ieiϕeiβ2 cosα f ′(−0)

+i(1− eiϕe−iβ1 sinα) f(+0) + (1 + eiϕe−iβ1 sinα) f ′(+0).

(36)

In the following subsections we discuss particular choices of K.

3.1. Classical Harmonic Oscillator

Let K =

(
0 −1
−1 0

)
. For instance, we can choose α = β1 = β2 = 0, ϕ = π. Then the

boundary conditions (32) reduce to

f(−0) = f(+0) and f ′(−0) = f ′(+0).

Hence CK = A is the classical harmonic oscillator.

3.2. Boundary Conditions such that CK = Bθ

Let β1 = β2 = 0, α ∈ (0, π), ϕ = α + π/2. Then

K = ieiα
(
sinα cosα
cosα − sinα

)
.

and the boundary conditions (36) become

0 =
(
1− ieiα sinα

)
f(−0) + i

(
1 + ieiα sinα

)
f ′(−0)

− eiα cosα
(
f(+0) + if ′(+0)

)
,

0 = −ieiα cosα
(
f(−0)− if ′(−0)

)
+ i

(
1− ieiα sinα

)
f(+0) +

(
1 + ieiα sinα

)
f ′(+0),

(37)

which, for α ̸= π/2 is true if and only if

f(−0) = f(+0) =: f(0) and f ′(−0)− f ′(+0) = 2 tanα f(0). (38)

Choose θ ∈ [0, π) such that cot θ = −
√
2 tanα. Then CK = Bθ with K as above. For

α = π/2, the conditions (37) are equivalent to f(+0) = f(−0) = 0.
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3.3. Boundary Conditions with Continuous Derivative

Let α ∈ (0, π) and let β1 = β2 = 0, ϕ = π/2− α. Note that eiϕ = ie−iα and

K = ie−iα

(
sinα cosα
cosα − sinα

)
.

Then equations (36) become

0 = e−iα cosα f(−0) + i(1 + ie−iα sinα) f ′(−0)

− e−iα cosα
(
f(+0) + if ′(+0)

)
0 = −e−iα cosα

(
if(−0) + f ′(−0)

)
+ ie−iα cosα f(+0) + (1 + ie−iα sinα)f ′(+0).

(39)

If α ̸= π/2, then (39) is equivalent to

f ′(−0) = f ′(+0) =: f ′(0) and f(+0)− f(−0) = −2 tanα f ′(0). (40)

If α = π/2, then (39) is equivalent to f ′(−0) = f ′(+0) = 0.

4. Interpretation of Some Extensions Via δ- and δ′-Type
Interactions

Observe that the operator A from (3) is closed. Hence the set H+ := D(A) becomes a
Hilbert space with the norm

∥f∥+ := ∥f∥A :=
(
∥f∥2 + ∥Af∥2

) 1
2 , f ∈ H+.

Let H0 := L2(R). In addition to the usual norm on H, de�ne

∥f∥− := sup{|⟨f, g⟩| : g ∈ H+, ∥g∥+ ≤ 1}, f ∈ H0,

and we de�ne H− to be the closure of H0 with respect to the norm ∥ ·∥−. Then (H−, ∥ ·∥−)
is a Hilbert space and it can be viewed as the dual space of H+. Observe that we have the
continuous inclusions

H+ ⊂ H0 ⊂ H−.

On says that H0 is rigged by H+ and H−, see, for instance, [2], Chapter 14.
If T : H+ → H0 is a bounded linear operator, then de�ne its adjoint operator T ∗ :

H0 → H− as the unique bounded linear operator that satis�es

⟨Tf, g⟩ = ⟨f, T ∗g⟩, f ∈ H+, g ∈ H0,

where ⟨· , ·⟩ denotes the inner product on H0.
Let us de�ne the functions

w1(t) =

{
v(t, 0), if t > 0,

v(−t, 0), if t < 0,
w2(t) =

{
v(t, 0), if t > 0,

−v(−t, 0), if t < 0,
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with v as in (25). Clearly w1, w2 ∈ H0 ⊂ H−. Observe that

w1(+0) = w1(−0) = w2(+0) = −w2(−0) = v(0, 0) = G(0) (41)

and w′
1(+0) = −w′

1(−0) = w′
2(+0) = w′

2(−0) = v′(0, 0) = −1. (42)

Lemma 7. The linear functionals

δ : H+ → C, δf = f(0),

δ′ : H+ → C, δ′f = f ′(0)

are bounded and

δf =
1

2
⟨Af,w1⟩, δ′f =

1

2G(0)
⟨Af,w2⟩, f ∈ H+.

Proof. Note that for any f ∈ H+ = D(A) and j = 1, 2, using integration by parts twice,
we have

⟨Af,wj⟩ =
+∞∫

−∞

(Af)(t) · wj(t) dt

=

0∫
−∞

(−f ′′(t) + t2f(t))wj(t) dt +

+∞∫
0

(−f ′′(t) + t2f(t))wj(t) dt

=

0∫
−∞

f(t)(−w′′
j (t) + t2wj(t)) dt +

+∞∫
0

f(t)(−w′′
j (t) + t2wj(t)) dt

+ f ′(0){wj(+0)− wj(−0)}+ f(0){w′
j(−0)− w′

j(+0)}

= f ′(0){wj(+0)− wj(−0)}+ f(0){w′
j(−0)− w′

j(+0)},

so the second claim follows from (41). Now the boundedness of δ and δ′ is clear, since
|δf | = |1

2
⟨Af,w1⟩| ≤ 1

2
∥Af∥ ∥w1∥ ≤ 1

2
∥f∥+∥w1∥, and analogously |δ′f | ≤ 1

2G(0)
∥f∥+∥w1∥.

2

Recall that in our case, H+ ⊂ D(A∗
0) ⊂ H0 ⊂ H−. By de�nition of H+, the operator

Ã : H+ → H0, Ãf = Af

is bounded. Let us calculate how Ã∗ acts on elements g ∈ D(A∗
0). As in the proof of

Lemma 7, integration by parts gives for f ∈ H+

⟨Af, g⟩ = {g(+0)− g(−0)} f ′(0) + {g′(−0)− g′(+0)} f(0) + ⟨f,A∗
0g⟩

= {g(+0)− g(−0)} 1

2G(0)
⟨Af,w2⟩+ {g′(−0)− g′(−0)} 1

2
⟨Af,w1⟩+ ⟨f,A∗

0g⟩

= {g(+0)− g(−0)} 1

2G(0)
⟨f, Ã∗w2⟩+ {g′(−0)− g′(+0)} 1

2
⟨f, Ã∗w1⟩+ ⟨f,A∗

0g⟩.
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So by Lemma 7, we obtain

Ã∗g =
g(+0)− g(−0)

2G(0)
Ã∗w2 +

g′(−0)− g′(+0)

2
Ã∗w1 + A∗

0g,

or, if we identify H− and (H+)
′,

Ã∗g = {g(+0)− g(−0)}δ′ − {g′(+0)− g′(−0)}δ + A∗
0g ∈ (H+)

′.

Hence A∗
0 can be seen as a perturbation of Ã∗:

A∗
0g = Ã∗g − {g(+0)− g(−0)}δ′ + {g′(+0)− g′(−0)}δ ∈ (H+)

′ (43)

for g ∈ D(A∗
0). Recall that the operators Bθ from Section 2 and CK from Section 3 satisfy

B ⊂ Bθ ⊂ A∗
0 and C ⊂ CK ⊂ A∗

0. So we obtain the following:

• Any function g ∈ D(CK) with K as in Subsection 3.1 satis�es g(−0) = g(+0) and
g′(−0) = g′(+0), hence

CKg = Ã∗g = A∗
0g.

• Any function g ∈ D(CK) with K as in Subsection 3.2 and α ̸= π/2 satis�es g(−0) =
g(+0) and g′(−0)− g′(+0) = 2 tanα g(0), hence

CKg = A∗
0g = Ã∗g − 2 tanα g(0)δ.

If we take θ such that cot θ = −
√
2 tanα, we obtain

Bθg = CKg =
√
2 cot θ g(0)δ + Ã∗g.

Note that Bθ has exactly one negative eigenvalue if θ ∈ (π/2 + αA, π) and this
eigenvalue decreases monotonically to −∞ as θ → π, that is

√
2 cot(θ) → −∞.

• Any function g ∈ D(CK) with K as in Subsection 3.3 satis�es g′(−0) = g′(+0) and
g(+0)− g(−0) = −2 tanα g′(0). Hence, for α ̸= π/2

CKg = A∗
0g = Ã∗g + 2 tanα g′(0)δ′.

5. Closing Remarks

The 3-dimensional point potential for the Schr�odinger operator was considered by
Zeldovich [16] and Berezin and Faddeev [3]. The free Schr�odinger operator with 1-
dimensional singular potential at 0 was investigated by �Seba in [11] and then later
by Kurasov in [10]. Both use von Neumann's extension theory to obtain selfadjoint
extensions of a given di�erential operator on R \ {0} and interpret their results in terms
of δ- and δ′-interactions at 0. See [1] for more information on this direction. The 1-
dimensional harmonic oscillator with δ-interaction at the origin was considered for instance
by Gadella, Glasser and Nieto in [7] and Viana-Gomes and Peres in [13]. In both works
the eigenfuntions are calculated in terms of con�uent hypergeometric functions. Moreover,
it is shown that the eigenvalues with odd eigenfunctions are not changed, whereas the
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eigenvalues with even eigenfunctions increase (for c > 0) or decrease (for c < 0) when
compared with the eigenvalues of the harmonic oscillator without singular perturbation.
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ÎÄÍÎÌÅÐÍÛÉ ÃÀÐÌÎÍÈ×ÅÑÊÈÉ ÎÑÖÈËßÒÎÐ
Ñ ÑÈÍÃÓËßÐÍÛÌ ÂÎÇÌÓÙÅÍÈÅÌ

Â.À. Øòðàóñ, Ì.À. Âèíêëüìàéåð

Â íàñòîÿùåé ðàáîòå èññëåäóåòñÿ îäíîìåðíûé âîçìóùåííûé ãàðìîíè÷åñêèé îñöèë-

ëÿòîð ñ ëåâî-ïðàâîñòîðîííèìè ãðàíè÷íûìè óñëîâèÿìè â íóëå. Íà ðàññìàòðèâàåìûé

îáúåêò ìîæíî ñìîòðåòü êàê íà êëàññè÷åñêèé ñàìîñîïðÿæåííûé ãàðìîíè÷åñêèé îñöèë-

ëÿòîð ñ ñèíãóëÿðíûì âîçìóùåíèåì, ñîñðåäîòî÷åííûì â îäíîé òî÷êå. Óêàçàííîå âîçìó-

ùåíèå ïîðîæäàåòñÿ äåëüòà-ôóíêöèåé Äèðàêà è/èëè åå ïðîèçâîäíîé. Îïèñûâàþòñÿ âñå

ñàìîñîïðÿæåííûå ðåàëèçàöèè ýòîé ñõåìû â òåðìèíàõ óêàçàííûõ ãðàíè÷íûõ óñëîâèé.

Ïîêàçûâàåòñÿ, ÷òî ïðè íåêîòîðûõ îãðàíè÷åíèÿõ íà âîçìóùåíèå (èëè, ÷òî ýêâèâàëåíò-

íî, íà ãðàíè÷íûå óñëîâèÿ) ó ñîîòâåòñòâóþùåãî äèôôåðåíöèàëüíîãî îïåðàòîðà ìîæåò

ïîÿâèòüñÿ ðîâíî îäíî íåïîëîæèòåëüíîå ñîáñòâåííîå çíà÷åíèå, è ïðèâîäèòñÿ àíàëè-

òè÷åñêîå âûðàæåíèå äëÿ ñîîòâåòñòâóþùåé ñîáñòâåííîé ôóíêöèè. Óêàçàííîå ñîáñòâåí-

íîå çíà÷åíèå ïðîáåãàåò âñþ íåîòðèöàòåëüíóþ ïîëóîñü êîãäà êîýôôèöèåíò âîçìóùåíèÿ

ïðîáåãàåò óñòàíîâëåííûé ïðîìåæóòîê. Äëÿ íåêîòîðûõ ñëó÷àåâ ïðèâîäèòñÿ íåïîñðåä-

ñòâåííàÿ çàâèñèìîñòü ìåæäó ïîäõîäÿùèìè ãðàíè÷íûìè óñëîâèÿìè, ñîîòâåòñòâóþùèì

íåîòðèöàòåëüíûì ñîáñòâåííûì çíà÷åíèåì è åãî ñîáñòâåííîé ôóíêöèåé.
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